Lipoprotein lipase (LpL) binding to heparan sulfate proteoglycans (HSPGs) is hypothesized to stabilize the enzyme, localize LpL in specific capillary beds, and route lipoprotein lipids to the underlying tissues. To test these hypotheses in vivo, we created mice expressing a human LpL minigene (hLpLHBM) carrying a mutated heparin-binding site. Three basic amino acids in the carboxyl terminal region of LpL were mutated, yielding an active enzyme with reduced heparin binding. Mice expressing hLpLHBM accumulated inactive human LpL (hLpL) protein in preheparin blood. hLpLHBM rapidly lost activity during a 37°C incubation, confirming a requirement for heparin binding to stabilize LpL. Nevertheless, expression of hLpLHBM prevented the neonatal demise of LpL knockout mice. On the LpL-deficient background hLpLHBM expression led to defective targeting of lipids to tissues. Compared with mice expressing native hLpL in the muscle, hLpLHBM transgenic mice had increased postprandial FFAs, decreased lipid uptake in muscle tissue, and increased lipid uptake in kidneys. Thus, heparin association is required for LpL stability and normal physiologic functions. These experiments confirm in vivo that association with HSPGs can provide a means to maintain proteins in their stable conformations and to anchor them at sites where their activity is required.
E. Peer Lutz, Martin Merkel, Yuko Kako, Kristan Melford, Herbert Radner, Jan L. Breslow, André Bensadoun, Ira J. Goldberg
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 592 | 133 |
63 | 31 | |
Figure | 251 | 8 |
Table | 41 | 0 |
Citation downloads | 67 | 0 |
Totals | 1,014 | 172 |
Total Views | 1,186 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.