To define the pathophysiological role of nitric oxide (NO) released from vascular smooth muscle cells (VSMC), we examined whether NO released from VSMC induces cytotoxicity in VSMC themselves and adjacent endothelial cells (EC) using a coculture system. Prolonged incubation with interleukin-1 (IL-1) induced large amounts of NO release and cytotoxicity in VSMC. NG-Monomethyl-L-arginine, an inhibitor of NO synthesis, inhibited both NO release and cytotoxicity induced by IL-1. In contrast, DNA synthesis in cocultured EC was not inhibited but rather stimulated by prolonged incubation with IL-1 or sodium nitroprusside (SNP), a NO donor. However, IL-1 and SNP did not stimulate but inhibited DNA synthesis in EC alone. On the other hand, conditioned medium from VSMC incubated for a long period with IL-1 or SNP stimulated DNA synthesis in EC alone. Furthermore, the concentration of basic fibroblast growth factor in the conditioned medium was increased and correlated with the degree of cytotoxicity in VSMC. These results indicate that NO released from VSMC induces VSMC death, which results in release of basic fibroblast growth factor, which then stimulates adjacent EC proliferation. Thus, NO released from VSMC may participate in the mechanism of neovascularization in atherosclerotic plaques.
K Fukuo, T Inoue, S Morimoto, T Nakahashi, O Yasuda, S Kitano, R Sasada, T Ogihara
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 143 | 2 |
42 | 13 | |
Figure | 0 | 1 |
Scanned page | 259 | 3 |
Citation downloads | 47 | 0 |
Totals | 491 | 19 |
Total Views | 510 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.