Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
32 readers on Mendeley
  • Article usage
  • Citations to this article (297)

Advertisement

Research Article Free access | 10.1172/JCI117675

Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction.

Y Nio, H Matsubara, S Murasawa, M Kanasaki, and M Inada

Second Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Find articles by Nio, Y. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Find articles by Matsubara, H. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Find articles by Murasawa, S. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Find articles by Kanasaki, M. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Find articles by Inada, M. in: JCI | PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):46–54. https://doi.org/10.1172/JCI117675.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Increasing evidence suggests that angiotensin II (AngII) acts as a modulator for ventricular remodeling after myocardial infarction. Using competitive reverse-transcriptase polymerase chain reaction, nuclear runoff, and binding assays, we examined the regulation of AngII type 1a and 1b (AT1a-R and AT1b-R) and type 2 receptor (AT2-R) expression in the infarcted rat heart as well as the effects of AngII receptor antagonists. AT1a-R mRNA levels were increased in the infarcted (4.2-fold) and noninfarcted portions (2.2-fold) of the myocardium 7 d after myocardial infarction as compared with those in sham-operated controls, whereas AT1b-R mRNA levels were unchanged. The amount of detectable AT2-R mRNA increased in infarcted (3.1-fold) and noninfarcted (1.9-fold) portions relative to that in the control. The transcription rates for AT1a-R and AT2-R genes, determined by means of a nuclear runoff assay, were significantly increased in the infarcted heart. The AngII receptor numbers were elevated (from 12 to 35 fmol/mg protein) in the infarcted myocardium in which the increases in AT1-R and AT2-R were 3.2- and 2.3-fold, respectively, while the receptor affinity was unchanged. Therapy with AT1-R antagonist for 7 d reduced the increase in AT1-R and AT2-R expressions in the infarcted heart together with a decrease in blood pressure, whereas therapy with an AT2-R antagonist did not affect mRNA levels and blood pressure. Neither AT1-R nor AT2-R antagonists affected the infarct sizes. These results demonstrated that myocardial infarction causes an increase in the gene transcription and protein expression of cardiac AT1a-R and AT2-R, whereas the AT1b-R gene is unaffected, and that therapy with an AT1-R antagonist, but not with an AT2-R antagonist, is effective in reducing the increased expression of AngII receptor subtypes induced by myocardial infarction.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 46
page 46
icon of scanned page 47
page 47
icon of scanned page 48
page 48
icon of scanned page 49
page 49
icon of scanned page 50
page 50
icon of scanned page 51
page 51
icon of scanned page 52
page 52
icon of scanned page 53
page 53
icon of scanned page 54
page 54
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (297)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
32 readers on Mendeley
See more details