Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels.
G Hajduczok, … , H Z Mao, F M Abboud
G Hajduczok, … , H Z Mao, F M Abboud
Published December 1, 1994
Citation Information: J Clin Invest. 1994;94(6):2392-2396. https://doi.org/10.1172/JCI117605.
View: Text | PDF
Research Article

Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels.

  • Text
  • PDF
Abstract

Gadolinium (Gd3+) has been shown to prevent mechanoelectrical transduction believed to be mediated through stretch-activated channels. We investigated the possible role of Gd(3+)-sensitive channels in mediating baroreceptor activity in the carotid sinus of rabbits. Baroreceptor activity induced by a ramp increase of carotid sinus pressure was reduced significantly during exposure to Gd3+. The inhibition was dose-related and reversible, and was not associated with alteration of carotid sinus wall mechanics as the pressure-strain relationship was unaffected. Veratrine triggered action potentials from single- and multiple-baroreceptor fibers when their response to pressure was inhibited by Gd3+. This suggests that the effect of Gd3+ on baroreceptors in the isolated carotid sinus was specific to their mechanical activation. The results suggest that stretch-activated ion channels sensitive to Gd3+ may be the mechanoelectrical transducers of rabbit carotid sinus baroreceptors.

Authors

G Hajduczok, M W Chapleau, R J Ferlic, H Z Mao, F M Abboud

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 159 3
PDF 46 10
Scanned page 218 1
Citation downloads 73 0
Totals 496 14
Total Views 510
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts