Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 3 patents
16 readers on Mendeley
  • Article usage
  • Citations to this article (36)

Advertisement

Research Article Free access | 10.1172/JCI117529

HIV-1 macrophage tropism is determined at multiple levels of the viral replication cycle.

R A Fouchier, M Brouwer, N A Kootstra, H G Huisman, and H Schuitemaker

Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.

Find articles by Fouchier, R. in: JCI | PubMed | Google Scholar

Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.

Find articles by Brouwer, M. in: JCI | PubMed | Google Scholar

Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.

Find articles by Kootstra, N. in: JCI | PubMed | Google Scholar

Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.

Find articles by Huisman, H. in: JCI | PubMed | Google Scholar

Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.

Find articles by Schuitemaker, H. in: JCI | PubMed | Google Scholar

Published November 1, 1994 - More info

Published in Volume 94, Issue 5 on November 1, 1994
J Clin Invest. 1994;94(5):1806–1814. https://doi.org/10.1172/JCI117529.
© 1994 The American Society for Clinical Investigation
Published November 1, 1994 - Version history
View PDF
Abstract

The ability of HIV-1 to infect macrophages is thought to be essential in AIDS pathogenesis. We tested the ability of 19 primary virus isolates to infect monocyte-derived macrophages (MDM) from different donors. Two HIV-1 isolates were able to establish a productive infection in MDM from all donors tested, whereas eight completely lacked this capacity. Next to these isolates with extreme phenotypes, 50% of the primary isolates under study displayed an intermediate phenotype. These intermediate macrophage-tropic isolates established a productive infection in MDM from some but not all donors tested. PCR analysis demonstrated that the capacity to replicate in MDM could be determined at the previously described level of virus entry. However, for intermediate macrophage-tropic isolates replication was abrogated at the level of reverse transcription. Entry of highly macrophage-tropic isolates resulted in efficient completion of the reverse transcription process, whereas entry of intermediate macrophage-tropic isolates did not. Our experiments indicate that primary HIV-1 isolates may differ in their dependency on cellular factors required for reverse transcription in MDM. Differences in susceptibility of MDM for in vitro HIV-1 infection suggest variation in the availability of these cellular factors between MDM from different individuals.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1806
page 1806
icon of scanned page 1807
page 1807
icon of scanned page 1808
page 1808
icon of scanned page 1809
page 1809
icon of scanned page 1810
page 1810
icon of scanned page 1811
page 1811
icon of scanned page 1812
page 1812
icon of scanned page 1813
page 1813
icon of scanned page 1814
page 1814
Version history
  • Version 1 (November 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (36)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
16 readers on Mendeley
See more details