Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women.
A G Kuruvilla, … , M J Maresh, C P Sibley
A G Kuruvilla, … , M J Maresh, C P Sibley
Published August 1, 1994
Citation Information: J Clin Invest. 1994;94(2):689-695. https://doi.org/10.1172/JCI117386.
View: Text | PDF
Research Article

Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women.

  • Text
  • PDF
Abstract

Fetal macrosomia (FM) is a well-recognized complication of diabetic pregnancy but it is not known whether placental transport mechanisms are altered. We therefore studied the activity of the system A amino acid transporter, the system L amino acid transporter, and the Na+/H+ exchanger in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women (FM group), from placentas of appropriately grown babies born to diabetic women (appropriate for gestational age group) and from placentas of appropriately grown babies of normal women (control group). Sodium-dependent uptake of [14C]-methylaminoisobutyric acid at 30 s (initial rate, a measure of system A activity) was 49% lower into FM vesicles than into control vesicles (P < 0.02); this effect was due to a decrease in Vmax of the transporter with no change in Km. There was no significant difference in system A activity between the appropriate for gestational age group and control or FM group. There was also no difference between system L transporter or Na+/H+ exchanger activity between the three groups. We conclude that the number of system A transporters per milligram of membrane protein in the placental microvillous membrane is selectively reduced in diabetic pregnancies associated with FM.

Authors

A G Kuruvilla, S W D'Souza, J D Glazier, D Mahendran, M J Maresh, C P Sibley

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 219 1
PDF 50 11
Scanned page 318 5
Citation downloads 69 0
Totals 656 17
Total Views 673
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts