Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.
S Zhan, … , D N Shapiro, L J Helman
S Zhan, … , D N Shapiro, L J Helman
Published July 1, 1994
Citation Information: J Clin Invest. 1994;94(1):445-448. https://doi.org/10.1172/JCI117344.
View: Text | PDF
Research Article Article has an altmetric score of 6

Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.

  • Text
  • PDF
Abstract

The insulin-like growth factor II (IGF2) gene is exclusively silent at the maternal allele in the mouse as well as in normal human tissues and is expressed at a high level in rhabdomyosarcoma (RMS). We report here that the normally imprinted allele of the IGF2 gene is activated in RMS tumors as well as in one RMS cell line. Since overexpression of IGF2 has been shown to be important in the pathogenesis of RMS, our data suggest that loss of imprinting (LOI) may lead to overexpression of IGF2 and play an important role in the onset of RMS. Furthermore, embryonal RMS usually has loss of heterozygosity (LOH) with paternal disomy of the IGF2 locus. One informative embryonal RMS tumor evaluated in this study was heterozygous at the IGF2 allele and had LOI, raising the possibility that LOI may be the functional equivalent of LOH in this tumor with both events leading to overexpression of IGF2.

Authors

S Zhan, D N Shapiro, L J Helman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 230 3
PDF 32 15
Scanned page 153 3
Citation downloads 61 0
Totals 476 21
Total Views 497
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
26 readers on Mendeley
See more details