Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Multiple lipolysis defects in the insulin resistance (metabolic) syndrome.
S Reynisdottir, … , H Lithell, P Arner
S Reynisdottir, … , H Lithell, P Arner
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2590-2599. https://doi.org/10.1172/JCI117271.
View: Text | PDF
Research Article

Multiple lipolysis defects in the insulin resistance (metabolic) syndrome.

  • Text
  • PDF
Abstract

Bearing in mind the importance of upper-body obesity for the insulin resistance (or metabolic) syndrome and the abnormalities in free fatty acid metabolism associated with this disorder, the regulation of lipolysis in isolated subcutaneous adipocytes was investigated in 13 72-yr old upper-body obese men with insulin resistance and glucose intolerance and in 10 healthy 72-yr-old men. There was a marked resistance to the lipolytic effect of noradrenaline in the metabolic syndrome due to defects at two different levels in the lipolytic cascade. First, an 80-fold decrease in sensitivity to the beta 2-selective agonist terbutaline (P < 0.001) which could be ascribed to a 50% reduced number of beta 2-receptors (P < 0.005) as determined with radioligand binding. The groups did not differ as regards dobutamine (beta 1) or clonidine (alpha-2) sensitivity, nor beta 1-receptor number. The mRNA levels for beta 1- and beta 2-receptors were similar in the two groups. Second, the maximum stimulated lipolytic rate was markedly reduced in the metabolic syndrome. This was true for isoprenaline (nonselective beta-agonist), forskolin (activating adenylyl cyclase), and dibutyryl cAMP (activating protein kinase). In regression analysis, the observed abnormalities in lipolysis regulation correlated in an independent way with the degree of glucose intolerance (r = -0.67) and beta 2-receptor number with insulin resistance (r = 0.67). In conclusion, the results of this study indicate the existence of lipolytic resistance to catecholamines in the adipose tissue of elderly men with the metabolic syndrome, which may be of importance for impaired insulin action and glucose intolerance. The resistance is located at a posttranscriptional level of beta 2-receptor expression and at the protein kinase-hormone sensitive lipase level.

Authors

S Reynisdottir, K Ellerfeldt, H Wahrenberg, H Lithell, P Arner

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 493 6
PDF 56 22
Scanned page 403 7
Citation downloads 68 0
Totals 1,020 35
Total Views 1,055
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts