Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.
K M Fitzgerald, … , S A Giambrone, D J Harris
K M Fitzgerald, … , S A Giambrone, D J Harris
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2425-2430. https://doi.org/10.1172/JCI117250.
View: Text | PDF
Research Article Article has an altmetric score of 6

Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.

  • Text
  • PDF
Abstract

There have been reports of abnormal retinal neurotransmission determined by electroretinography in boys with Duchenne and Becker muscular dystrophy. Dystrophin may play a role in transmitting signals between photoreceptors and the excitatory synapse of the ON-bipolar cell. These electroretinographic changes appeared to be limited to the rod ON-pathway but we felt there was also similar abnormality in the cone ON-pathway. We used long-duration stimuli to separate ON-(depolarizing bipolar cell) and OFF (hyperpolarizing bipolar cell) contributions to the cone-dominated ERG to better understand how the retina functions in boys with Duchenne muscular dystrophy. We recorded the electroretinograms of 11 boys with Duchenne muscular dystrophy and found abnormal signal transmission at the level of the photoreceptor and ON-bipolar cell in both the rod and cone generated responses. The OFF-bipolar cell that responds to the offset of the stimulus continues to function normally. The results support our hypothesis that retinal dystrophin plays a role in receptor function or controlling ion channels at the level of the photoreceptor and depolarizing bipolar cell.

Authors

K M Fitzgerald, G W Cibis, S A Giambrone, D J Harris

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 178 4
PDF 62 16
Scanned page 240 3
Citation downloads 63 0
Totals 543 23
Total Views 566
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 14 patents
47 readers on Mendeley
See more details