Several lines of evidence indicate that calcium deficiency is associated with cellular defects in many tissues and organs. Owing to the large in vivo gradient between ionized extra- and intracellular Ca2+ concentrations ([Ca2+]i), it is generally recognized that the prevailing circulating Ca2+ does not significantly affect resting cytosolic Ca2+. To probe the consequences of hypocalcemia on [Ca2+]i, a model of chronic hypocalcemia secondary to vitamin D (D) deficiency was used. Hepatocytes were isolated from livers of hypocalcemic D-deficient, of normocalcemic D3-repleted, or of normal control rats presenting serum Ca2+ of 0.78 +/- 0.02, 1.24 +/- 0.03, or 1.25 +/- 0.01 mM, respectively (P < 0.0001). [Ca2+]i was measured in cell couplets using the fluorescent probe Fura-2. Hepatocytes of normocalcemic D3-repleted and of normal controls exhibited similar [Ca2+]i of 227 +/- 10 and 242 +/- 9 nM, respectively (NS), whereas those of hypocalcemic rats had significantly lower resting [Ca2+]i (172 +/- 10 nM; P < 0.0003). Stimulation of hepatocytes with the alpha 1-adrenoreceptor agonist phenylephrine illicited increases in cytosolic Ca2+ leading to similar [Ca2+]i and phosphorylase a (a Ca(2+)-dependent enzyme) activity in all groups but in contrast to normocalcemia, low extracellular Ca2+ was often accompanied by a rapid decay in the sustained phase of the [Ca2+]i response. When stimulated with the powerful hepatic mitogen epidermal growth factor (EGF), hepatocytes isolated from hypocalcemic rat livers responded with a blunted maximal [Ca2+]i of 237.6 +/- 18.7 compared with 605.2 +/- 89.9 nM (P < 0.0001) for their normal counterparts, while the EGF-mediated DNA synthesis response was reduced by 50% by the hypocalcemic condition (P < 0.03). Further studies on the possible mechanisms involved in the perturbed [Ca2+]i homeostasis associated with chronic hypocalcemia revealed the presence of an unchanged plasma membrane Ca2+ ATPase but of a significant decrease in agonist-stimulated Ca2+ entry as indicated using Mn2+ as surrogate ion (P < 0.03). Our data, thus indicate that, in rat hepatocytes, the in vivo calcium status significantly affects resting [Ca2+]i, and from this we raise the hypothesis that this lower than normal [Ca2+]i may be linked, in calcium disorders, to inappropriate cell responses mediated through the calcium signaling pathway as illustrated by the response to phenylephrine and EGF.
M Gascon-Barré, P Haddad, S J Provencher, S Bilodeau, F Pecker, S Lotersztajn, S Vallières
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 115 | 3 |
39 | 12 | |
Scanned page | 289 | 5 |
Citation downloads | 53 | 0 |
Totals | 496 | 20 |
Total Views | 516 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.