Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tetracycline-regulated cardiac gene expression in vivo.
G I Fishman, … , M L Kaplan, P M Buttrick
G I Fishman, … , M L Kaplan, P M Buttrick
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1864-1868. https://doi.org/10.1172/JCI117174.
View: Text | PDF
Research Article

Tetracycline-regulated cardiac gene expression in vivo.

  • Text
  • PDF
Abstract

Tight regulation of foreign genes expressed in vivo would facilitate studies of many biologic processes and would be useful for gene transfer-based therapies. To test the ability of a tetracycline-regulated gene expression system to function in vivo, we directly injected chimeric tet repressor-VP16 transactivator expression plasmids and luciferase target genes into the hearts of adult rats. Cardiac luciferase activity increased over two orders of magnitude in response to small changes in input tetracycline-controlled transactivator DNA. Transactivation was repressed to background levels by subtherapeutic concentrations of tetracycline in a dose-dependent manner. Target gene expression could be rapidly and reversibly controlled by manipulating antibiotic administration. This system may be particularly useful for in vivo studies of gene function or gene therapies where the timing or extent of expression are critical variables.

Authors

G I Fishman, M L Kaplan, P M Buttrick

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 185 4
PDF 38 13
Figure 0 1
Scanned page 166 11
Citation downloads 53 0
Totals 442 29
Total Views 471
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts