Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117165

Direct quantification of apparent binding indices from quinidine-induced in vivo conduction delay in canine myocardium.

F N Haugland, S B Johnson, and D L Packer

Saint Mary's Hospital Complex, Mayo Foundation, Rochester, Minnesota 55902.

Find articles by Haugland, F. in: JCI | PubMed | Google Scholar

Saint Mary's Hospital Complex, Mayo Foundation, Rochester, Minnesota 55902.

Find articles by Johnson, S. in: JCI | PubMed | Google Scholar

Saint Mary's Hospital Complex, Mayo Foundation, Rochester, Minnesota 55902.

Find articles by Packer, D. in: JCI | PubMed | Google Scholar

Published April 1, 1994 - More info

Published in Volume 93, Issue 4 on April 1, 1994
J Clin Invest. 1994;93(4):1798–1811. https://doi.org/10.1172/JCI117165.
© 1994 The American Society for Clinical Investigation
Published April 1, 1994 - Version history
View PDF
Abstract

To characterize quantitatively the quinidine (QUIN)-induced conduction delay (CD) in vivo, canine ventricular activation times were examined with an epicardial mapping technique. A high-resolution index of normalized (N) QUIN CD, derived from all 56 recording sites, was used to quantify QUIN effect. Repetitive stimulation elicited monoexponential increases in CD(N), the rates of which were a linear function of interpulse recovery interval, tr. Steady-state CD(N) was also linearly related to an exponential function of tr and drug uptake rates. The frequency-dependent properties of QUIN in 14 dogs were characterized by apparent binding and unbinding rates of ka = 7.1 +/- 3.5 x 10(6) M-1 s-1, la = 81 +/- 51 s-1 for activated, and kr = 12.6 +/- 11.3 x 10(3) M-1 s-1, lr = 0.51 +/- 0.26 s-1 for resting states. ka and la were similar to values previously derived in canine Purkinje fibers. Drug unbinding at resting potentials was faster in vivo than previously observed in vitro. The time constant of recovery from QUIN block extracted from the interpulse recovery rate was also identical to that determined from post-mature stimulus diastolic scanning. As predicted by the two-state model, similar binding rates were also derived from declining CD(N) elicited by step decreases in heart rate. These findings represent a complete quantitative description of use-dependent QUIN CD in vivo and provide a firm foundation for characterizing antiarrhythmic drug action under physiologic and pathologic conditions.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1798
page 1798
icon of scanned page 1799
page 1799
icon of scanned page 1800
page 1800
icon of scanned page 1801
page 1801
icon of scanned page 1802
page 1802
icon of scanned page 1803
page 1803
icon of scanned page 1804
page 1804
icon of scanned page 1805
page 1805
icon of scanned page 1806
page 1806
icon of scanned page 1807
page 1807
icon of scanned page 1808
page 1808
icon of scanned page 1809
page 1809
icon of scanned page 1810
page 1810
icon of scanned page 1811
page 1811
Version history
  • Version 1 (April 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts