The strategic location of mast cells at the host-environment interface and their ability to release potent mediators of inflammation have suggested that these cells may play a pivotal role in host defense against bacterial infection. The ability of the opportunistic pathogen, Escherichia coli, to induce degranulation of mast cells obtained from the mouse peritoneum was investigated. We determined that unlike a mutant derivative deficient in the FimH subunit of the fimbriae or nonfimbriated E. coli, type 1 fimbriated E. coli induced mast cell degranulation in vitro. The magnitude of mast cell degranulation was directly proportional to the number of adherent bacteria on the cell surface in the initial period of the interaction. Using a mouse model of bacterial peritonitis, we demonstrated mast cell degranulation and histamine release by type 1 fimbriated bacteria in vivo. Furthermore, beads coated with FimH but not with FimA, the major subunit of type 1 fimbriae, evoked mast cell release of histamine in vivo in amounts comparable to that elicited by type 1 fimbriated E. coli. These studies reveal that mast cells can be degranulated by interaction with type 1 fimbriated E. coli and that FimH, the mannose-binding component of the fimbriae, is a potent mast cell stimulant.
R Malaviya, E Ross, B A Jakschik, S N Abraham
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 235 | 9 |
43 | 12 | |
Figure | 0 | 1 |
Scanned page | 362 | 4 |
Citation downloads | 51 | 0 |
Totals | 691 | 26 |
Total Views | 717 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.