Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca(2+)-sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study defines the role this channel plays in migration of MDCK-F cells. We monitored migration of individual MDCK-F cells by video imaging techniques. Under control conditions, MDCK-F cells migrated at a rate of 0.90 +/- 0.03 microns/min (n = 201). Application of K+ channel blockers (1 and 5 mmol/liter Ba2+, 5 mmol/liter tetraethylammonium, 100 mumol/liter 4-aminopyridine, 5 nmol/liter charybdotoxin) caused marked inhibition of migration, pointing to the importance of K+ channels in migration. Using patch-clamp techniques, we demonstrated the sensitivity of the Ca(2+)-sensitive 53-pS K+ channel to these blockers. Blockade of this K+ channel and inhibition of migration were closely correlated, indicating the necessity of oscillating K+ channel activity for migration. Migration of MDCK-F cells was also inhibited by furosemide or bumetanide, blockers of the Na+/K+/2Cl- cotransporter. We present a model for migration in which oscillations of cell volume play a central role. Whenever they are impaired, migration is inhibited.
A Schwab, L Wojnowski, K Gabriel, H Oberleithner
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 198 | 1 |
48 | 17 | |
Figure | 0 | 1 |
Scanned page | 261 | 5 |
Citation downloads | 61 | 0 |
Totals | 568 | 24 |
Total Views | 592 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.