Stromal cells of the bone marrow control the development of osteoclasts through the production of cytokines capable of promoting the proliferation and differentiation of hematopoietic progenitors. Moreover, the deregulated production of the cytokine IL-6 in the bone marrow mediates an increase in osteoclastogenesis after estrogen loss. IL-6, however, does not influence osteoclastogenesis in the estrogen-replete state, suggesting that other cytokines might be responsible for osteoclast development under physiologic circumstances. We report here that IL-11, a newly discovered cytokine that is produced by marrow stromal cells, induced the formation of osteoclasts exhibiting an unusually high degree of ploidy in cocultures of murine bone marrow and calvarial cells. Osteoclasts formed in the presence of IL-11 were capable of bone resorption, as evidenced by the formation of resorption pits, as well as the release of 45Ca from prelabeled murine calvaria. Further, an antibody neutralizing IL-11 suppressed osteoclast development induced by either 1,25-dihydroxyvitamin D3, parathyroid hormone, interleukin-1, or tumor necrosis factor; whereas inhibitors of IL-1 or TNF had no effect on IL-11-stimulated osteoclast formation. The effects of IL-11 on osteoclast development were blocked by indomethacin; more important, however, they were independent of the estrogen status of the marrow donors.
G Girasole, G Passeri, R L Jilka, S C Manolagas
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 341 | 12 |
50 | 34 | |
Scanned page | 350 | 11 |
Citation downloads | 53 | 0 |
Totals | 794 | 57 |
Total Views | 851 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.