Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117113

Molecular mechanism of transcriptional activation of angiotensinogen gene by proximal promoter.

K Tamura, S Umemura, M Ishii, K Tanimoto, K Murakami, and A Fukamizu

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Tamura, K. in: JCI | PubMed | Google Scholar

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Umemura, S. in: JCI | PubMed | Google Scholar

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Ishii, M. in: JCI | PubMed | Google Scholar

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Tanimoto, K. in: JCI | PubMed | Google Scholar

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Murakami, K. in: JCI | PubMed | Google Scholar

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

Find articles by Fukamizu, A. in: JCI | PubMed | Google Scholar

Published April 1, 1994 - More info

Published in Volume 93, Issue 4 on April 1, 1994
J Clin Invest. 1994;93(4):1370–1379. https://doi.org/10.1172/JCI117113.
© 1994 The American Society for Clinical Investigation
Published April 1, 1994 - Version history
View PDF
Abstract

Angiotensinogen is shown to be produced by the liver and the hepatoma cell line HepG2. As a first step for understanding the molecular relationship between the transcriptional regulation of the angiotensinogen gene and the pathogenesis of hypertension, we have analyzed the basal promoter of the angiotensinogen gene. Chloramphenicol acetyltransferase (CAT) assays with 5'-deleted constructs showed that the proximal promoter region from -96 to +22 of the transcriptional start site was enough to express HepG2-specific CAT activity. Electrophoretic mobility shift assay and DNase I footprinting demonstrated that the liver- and HepG2-specific nuclear factor (angiotensinogen gene-activating factor [AGF2]) and ubiquitous nuclear factor (AGF3) bound to the proximal promoter element from -96 to -52 (angiotensinogen gene-activating element [AGE2]) and to the core promoter element from -6 to +22 (AGE3), respectively. The site-directed disruption of either AGE2 or AGE3 decreased CAT expression, and the sequential titration of AGF3 binding by in vivo competition remarkably suppressed HepG2-specific CAT activity. Finally, the heterologous thymidine kinase promoter assay showed that AGE2 and AGE3 synergistically conferred HepG2-specific CAT expression. These results suggest that the synergistic interplay between AGF2 and AGF3 is important for the angiotensinogen promoter activation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1370
page 1370
icon of scanned page 1371
page 1371
icon of scanned page 1372
page 1372
icon of scanned page 1373
page 1373
icon of scanned page 1374
page 1374
icon of scanned page 1375
page 1375
icon of scanned page 1376
page 1376
icon of scanned page 1377
page 1377
icon of scanned page 1378
page 1378
icon of scanned page 1379
page 1379
Version history
  • Version 1 (April 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts