Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 4

See more details

Posted by 1 X users
Referenced in 12 patents
35 readers on Mendeley
  • Article usage
  • Citations to this article (201)

Advertisement

Research Article Free access | 10.1172/JCI117107

Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro.

S M Lynch, J D Morrow, L J Roberts 2nd, and B Frei

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115.

Find articles by Lynch, S. in: JCI | PubMed | Google Scholar

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115.

Find articles by Morrow, J. in: JCI | PubMed | Google Scholar

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115.

Find articles by Roberts, L. in: JCI | PubMed | Google Scholar

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115.

Find articles by Frei, B. in: JCI | PubMed | Google Scholar

Published March 1, 1994 - More info

Published in Volume 93, Issue 3 on March 1, 1994
J Clin Invest. 1994;93(3):998–1004. https://doi.org/10.1172/JCI117107.
© 1994 The American Society for Clinical Investigation
Published March 1, 1994 - Version history
View PDF
Abstract

F2-isoprostanes are prostaglandin F2-like compounds that are known to be formed in vivo by free radical oxidation of arachidonyl-containing lipids, and their plasma levels have been suggested as indicators of in vivo oxidative stress. As oxidation of LDL, a likely causal factor in atherosclerosis, involves lipid peroxidation, we investigated whether F2-isoprostanes are formed in plasma and LDL exposed to oxidative stress, and how F2-isoprostane formation is related to endogenous antioxidant status. In plasma exposed to aqueous peroxyl radicals, lipid hydroperoxides and esterified F2-isoprostanes were formed simultaneously after endogenous ascorbate and ubiquinol-10 had been exhausted, despite the continued presence of urate, alpha-tocopherol, beta-carotene, and lycopene. In isolated LDL exposed to aqueous peroxyl radicals or Cu2+, consumption of endogenous ubiquinol-10 and alpha-tocopherol was followed by rapid formation and subsequent breakdown of lipid hydroperoxides and esterified F2-isoprostanes, and a continuous increase in LDL's electronegativity, indicative of atherogenic modification. In Cu(2+)-exposed LDL, the decrease in esterified F2-isoprostane levels was paralleled by the appearance of free F2-isoprostanes, suggesting that hydrolysis by an LDL-associated activity had occurred. Our data suggest that F2-isoprostanes are useful markers of LDL oxidation in vivo. As F2-isoprostanes are potent vasoconstrictors and can modulate platelet aggregation, their formation in LDL demonstrated here may also have important implications for the etiology of cardiovascular disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 998
page 998
icon of scanned page 999
page 999
icon of scanned page 1000
page 1000
icon of scanned page 1001
page 1001
icon of scanned page 1002
page 1002
icon of scanned page 1003
page 1003
icon of scanned page 1004
page 1004
Version history
  • Version 1 (March 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 4
  • Article usage
  • Citations to this article (201)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 12 patents
35 readers on Mendeley
See more details