Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Adenosine triphosphate-dependent transport of doxorubicin, daunomycin, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein.
S Awasthi, … , E P Frenkel, S V Singh
S Awasthi, … , E P Frenkel, S V Singh
Published March 1, 1994
Citation Information: J Clin Invest. 1994;93(3):958-965. https://doi.org/10.1172/JCI117102.
View: Text | PDF
Research Article

Adenosine triphosphate-dependent transport of doxorubicin, daunomycin, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein.

  • Text
  • PDF
Abstract

Previous studies have demonstrated that a human glutathione conjugate transporter, designated as dinitrophenyl-S-glutathione ATPase (DNP-SG ATPase), catalyzed ATP hydrolysis in the presence of several amphiphilic compounds other than glutathione conjugates (Singhal, S. S., R. Sharma, S. Gupta, H. Ahmad, P. Zimniak, A. Radominska, R. Lester, and Y. C. Awasthi. 1991. FEBS [Fed. Eur. Biochem. Soc.] Lett. 281:255-257). We now demonstrate that DNP-SG ATPase purified from human lung and erythrocyte membranes catalyzed the hydrolysis of ATP in the presence of doxorubicin and its metabolites. Doxorubicin-stimulated ATP hydrolysis by DNP-SG ATPase was saturable with respect to doxorubicin (Km 1.2 and 2.8 microM for the lung and erythrocyte enzymes, respectively). Antibodies against DNP-SG ATPase immunoprecipitated the ATP hydrolyzing activity stimulated by doxorubicin, its metabolites, and glutathione conjugates. Inside our vesicles prepared from erythrocyte membranes took up doxorubicin, daunomycin, and vinblastine in an ATP-dependent manner. The uptake was linear with respect to time and vesicle protein, was dependent on ATP and magnesium, was inhibited by heavy metal salts or by heating the vesicles, and was sensitive to both osmolarity and orientation of the vesicles. The transport had an activation energy of 13 kcal/mol, was saturable with respect to both doxorubicin and ATP (Km values of 1.8 microM and 1.9 mM, respectively), and was competitively inhibited by glutathione conjugates as well as by a number of amphiphiles such as daunomycin or vinblastine. Transport was diminished upon coating the vesicles with antibodies against DNP-SG ATPase. Incorporation of increasing amounts of purified DNP-SG ATPase into the vesicles resulted in a linear increase in transport of doxorubicin. These studies demonstrated for the first time that a membrane protein that catalyzed the transport of anionic amphiphilic molecules such as glutathione conjugates could also mediate the transport of weakly cationic antitumor antibiotic, doxorubicin. Notably, the Km of transport was in the range of doxorubicin concentration achievable in human serum after intravenous dosing of doxorubicin.

Authors

S Awasthi, S S Singhal, S K Srivastava, P Zimniak, K K Bajpai, M Saxena, R Sharma, S A Ziller 3rd, E P Frenkel, S V Singh

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 187 3
PDF 47 26
Scanned page 336 3
Citation downloads 67 0
Totals 637 32
Total Views 669
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts