Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
13 readers on Mendeley
  • Article usage
  • Citations to this article (89)

Advertisement

Research Article Free access | 10.1172/JCI117019

Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.

H S Tenenhouse, A Werner, J Biber, S Ma, J Martel, S Roy, and H Murer

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Tenenhouse, H. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Werner, A. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Biber, J. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Ma, S. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Martel, J. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Roy, S. in: JCI | PubMed | Google Scholar

McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, Quebec, Canada.

Find articles by Murer, H. in: JCI | PubMed | Google Scholar

Published February 1, 1994 - More info

Published in Volume 93, Issue 2 on February 1, 1994
J Clin Invest. 1994;93(2):671–676. https://doi.org/10.1172/JCI117019.
© 1994 The American Society for Clinical Investigation
Published February 1, 1994 - Version history
View PDF
Abstract

The X-linked Hyp mouse is characterized by a specific defect in proximal tubular phosphate (Pi) reabsorption that is associated with a decrease in Vmax of the high affinity Na(+)-Pi cotransport system in the renal brush border membrane. To understand the mechanism for Vmax reduction, we examined the effect of the Hyp mutation on renal expression of Na(+)-Pi cotransporter mRNA and protein. Northern hybridization of renal RNA with a rat, renal-specific Na(+)-Pi cotransporter cDNA probe (NaPi-2) (Magagnin et al. 1993. Proc. Natl. Acad. Sci. USA. 90:5979-5983.) demonstrated a reduction in a 2.6-kb transcript in kidneys of Hyp mice relative to normal littermates (NaPi-2/beta-actin mRNA = 57 +/- 6% of normal in Hyp mice, n = 6, P < 0.01). Na(+)-Pi cotransport, but not Na(+)-sulfate cotransport, was approximately 50% lower in Xenopus oocytes injected with renal mRNA extracted from Hyp mice when compared with that from normal mice. Hybrid depletion experiments documented that the mRNA-dependent expression of Na(+)-Pi cotransport in oocytes was related to NaPi-2. Western analysis demonstrated that NaPi-2 protein is also significantly reduced in brush border membranes of Hyp mice when compared to normals. The present data demonstrate that the specific reduction in renal Na(+)-Pi cotransport in brush border membranes of Hyp mice can be ascribed to a proportionate decrease in the abundance of Na(+)-Pi cotransporter mRNA and protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 671
page 671
icon of scanned page 672
page 672
icon of scanned page 673
page 673
icon of scanned page 674
page 674
icon of scanned page 675
page 675
icon of scanned page 676
page 676
Version history
  • Version 1 (February 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (89)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
13 readers on Mendeley
See more details