Hepatitis B virus (HBV) variants with precore mutation(s) resulting in the absence of HBeAg production have been associated with the occurrence of fulminant hepatitis in Japan, Israel, and southern Europe, where the prevalence of this HBV strain appears common. In areas such as United States, where HBV infection is not endemic, the role of this mutant virus in fulminant hepatitis is unknown. We developed an amplification refractory mutation detection system to detect specifically the presence of the G to A mutation at nucleotide position 1898, which is the most frequently observed mutation resulting in a precore stop codon. In addition, this method provided a quantitative measurement of the relative ratio of one strain to the other. Using this system, we tested HBV strains for the presence of the stop codon mutation in sera from 40 cases of fulminant hepatitis B occurring in the United States. Serum HBV DNAs from 28 patients were analyzed successfully. A mixture of wild-type and mutant strains in various ratios were observed in 15 patients, wild type exclusively in 11, and mutant exclusively in 2. Four of these patients had undergone liver transplantation for HBV-associated cirrhosis and developed fulminant HBV-associated hepatitis after transplantation. Pre- and posttransplant serum samples from one patient were analyzed: a mixture of wild-type and mutant HBV strains was detected in both samples. Our study demonstrated that both wild-type and mutant HBV strains are associated with fulminant hepatitis, and that in some patients in the United States, factors other than precore mutations contribute to the development of fulminant hepatitis.
T J Liang, K Hasegawa, S J Munoz, C N Shapiro, B Yoffe, B J McMahon, C Feng, H Bei, M J Alter, J L Dienstag
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 148 | 1 |
58 | 23 | |
Scanned page | 214 | 3 |
Citation downloads | 57 | 0 |
Totals | 477 | 27 |
Total Views | 504 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.