Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 3 patents
32 readers on Mendeley
  • Article usage
  • Citations to this article (75)

Advertisement

Research Article Free access | 10.1172/JCI116967

H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury.

D K Kim, L Zhang, V J Dzau, and R E Pratt

Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, California 94305-5246.

Find articles by Kim, D. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, California 94305-5246.

Find articles by Zhang, L. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, California 94305-5246.

Find articles by Dzau, V. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, California 94305-5246.

Find articles by Pratt, R. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):355–360. https://doi.org/10.1172/JCI116967.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

Vascular smooth muscle cell migration, proliferation, and differentiation are central to blood vessel development. Since neointimal formation after vascular injury may require the reexpression of a smooth muscle developmental sequence, we examined the expression of H19, a developmentally regulated gene, in rat blood vessels. Expression of the H19 gene is associated with the differentiation process that takes place during development of many tissues. Consistent with this, H19 was highly expressed in the 1-d-old rat aorta but was undetectable in the adult. H19 transcripts were only minimally detected in uninjured carotid artery but were abundant at 7 and 14 d after injury and were localized by in situ hybridization, primarily to the neointima. H19 transcript were undetectable in proliferating neointimal cells in culture but became highly abundant in postconfluent, differentiated neointimal cells. H19 transcripts were only minimally expressed in adult medial smooth muscle cells grown under the identical conditions. Thus, H19 may play an important role in the normal development and differentiation of the blood vessel and in the phenotypic changes of the smooth muscle cells, which are associated with neointimal lesion formation. The vascular injury model may be a useful system to use in examining the function of H19.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 355
page 355
icon of scanned page 356
page 356
icon of scanned page 357
page 357
icon of scanned page 358
page 358
icon of scanned page 359
page 359
icon of scanned page 360
page 360
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (75)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
32 readers on Mendeley
See more details