Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (95)

Advertisement

Research Article Free access | 10.1172/JCI116932

Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men.

C Castillo, C Bogardus, R Bergman, P Thuillez, and S Lillioja

Clinical Diabetes and Nutrition Section, National Institutes of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Castillo, C. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institutes of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Bogardus, C. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institutes of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Bergman, R. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institutes of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Thuillez, P. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institutes of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Lillioja, S. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):10–16. https://doi.org/10.1172/JCI116932.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

Insulin action and obesity are both correlated with the density of muscle capillary supply in humans. Since the altered muscle anatomy in the obese might affect interstitial insulin concentrations and reduce insulin action, we have cannulated peripheral lymphatic vessels in lean and obese males, and compared peripheral lymph insulin concentrations with whole body glucose uptake during a euglycemic, hyperinsulinemic clamp. Lymph insulin concentrations in the lower limb averaged only 34% of arterial insulin concentrations during 150 min of insulin infusion. Obese subjects had the highest arterial (P < or = 0.0001) and lymph insulin (P < 0.005) concentrations, but the lowest glucose uptake rates (P < 0.002). In contrast to the initial steep rise then plateau of arterial insulins, both lymph insulin and whole body glucose uptake rates rose slowly and did not consistently reach a plateau. In each individual, the glucose uptake closely correlated with peripheral lymphatic insulin concentrations (mean r2 = 0.95). The coupling between glucose uptake and lymph insulin (glucose uptake/pmol insulin) was much steeper in lean subjects than in the obese (P < or = 0.0001). These results indicate that even if insulin diffusion into tissues is rate limiting for insulin action, a tissue defect rather than an insulin diffusion defect causes insulin resistance in obese subjects.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 10
page 10
icon of scanned page 11
page 11
icon of scanned page 12
page 12
icon of scanned page 13
page 13
icon of scanned page 14
page 14
icon of scanned page 15
page 15
icon of scanned page 16
page 16
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (95)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts