Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions.
R Giavazzi, … , R Dossi, A Remuzzi
R Giavazzi, … , R Dossi, A Remuzzi
Published December 1, 1993
Citation Information: J Clin Invest. 1993;92(6):3038-3044. https://doi.org/10.1172/JCI116928.
View: Text | PDF
Research Article

Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions.

  • Text
  • PDF
Abstract

We investigated the interaction of different human tumor types with resting and IL-1-activated human umbilical vein endothelial cells under laminar flow conditions using a parallel plate flow chamber. Three tumor cell lines (the HT-29M colon carcinoma, the OVCAR-3 ovarian carcinoma, and the T-47D breast carcinoma) showed limited adhesion to unstimulated endothelial cells at any of the shear stress levels tested, while rolling and massive adhesion of tumor cells were observed on IL-1-activated endothelial cells. Three other tumor cell lines (the A375M and A2058 melanomas and the MG-63 osteosarcoma) did not adhere on resting endothelial cells at high shear stress (> 1.5 dyn/cm2) and started to adhere with decreasing shear stress; the number of adherent cells increased steeply on IL-1-activated endothelial cells, but no cell rolling was observed even at the highest shear stress. These mechanisms of tumor cell interaction with endothelial cells were analyzed in detail using the HT-29M colon carcinoma and the A375M melanoma. Incubation of activated endothelial cells with a monoclonal antibody against E-selectin inhibited rolling and adhesion of HT-29M, but had no effect on the adhesion of A375M cells; monoclonal antibody against vascular cell adhesion molecule-1 reduced the adhesion of A375M cells and had no effect on HT-29M. The selective interaction of these two molecules with tumor cells was confirmed by measuring the adhesion of tumor cells on immobilized soluble proteins. On E-selectin-coated surfaces, HT-29M cells rolled during perfusion experiments without subsequent adhesion, while A375M cells did not adhere. On vascular cell adhesion molecule-1-coated surfaces, HT-29M cells neither adhered nor rolled, while A375M cells adhered massively without rolling. Under flow conditions, therefore, cells from different tumor types interact with the endothelial surface by different mechanisms, depending on adhesion molecules expressed on the tumor and endothelial cell surface.

Authors

R Giavazzi, M Foppolo, R Dossi, A Remuzzi

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 339 32
PDF 59 26
Figure 0 1
Scanned page 263 3
Citation downloads 61 0
Totals 722 62
Total Views 784
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts