The products of the collagen-alpha 1(I) and -alpha 2(I) genes form the triple helical molecule collagen type I, which constitutes the major ECM protein in tissue fibrosis. The collagen-alpha 1(I) gene is mainly transcriptionally regulated, and its promoter activity depends on the interaction of the transcription factors NF-I and Sp1 with a tandem repeat of evolutionary conserved NF-I/Sp1 switch elements. An increased affinity of Sp1 to these elements has been observed in experimental liver fibrosis. Here, we demonstrate that the DNA binding drug mithramycin displays a high affinity binding to the GC-rich elements in the collagen-alpha 1(I) promoter as measured by DNAse I protection and gel retardation assays. Mithramycin interferes with Sp1 but not with NF-I binding to these sites. At a concentration of 100 nM, mithramycin efficiently reduces basal and TGF-beta-stimulated alpha 1(I) gene expression in human primary fibroblasts. The transcriptional activity and mRNA steady state levels of other genes, including the collagenase gene, as well as the growth rate of fibroblasts remained unchanged on exposure to this drug. Taken together, our results indicate that the transcriptional activity of the type I collagen gene highly depends on its GC-rich regulatory elements, and further, that these elements can be differentially blocked, thereby changing the balance between ECM structural and degrading gene activities in human fibroblasts.
M C Nehls, D A Brenner, H J Gruss, H Dierbach, R Mertelsmann, F Herrmann
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 139 | 10 |
60 | 0 | |
Scanned page | 215 | 2 |
Citation downloads | 53 | 0 |
Totals | 467 | 12 |
Total Views | 479 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.