The present study was designed to determine whether bradykinin induces endothelium-dependent hyperpolarization of vascular smooth muscle in human coronary arteries, and if so, to define the contribution of this hyperpolarization to endothelium-dependent relaxations. The membrane potential of arterial smooth muscle cells (measured by glass microelectrodes) and changes in isometric force were recorded in tissues from six patients undergoing heart transplantation. In the presence of indomethacin and NG-nitro-L-arginine (NLA), the membrane potential was -48.3 +/- 0.6 and -46.9 +/- 0.6 mV, in preparations with and without endothelium, respectively, and was not affected by treatment with perindoprilat, an angiotensin-converting enzyme inhibitor. In the presence of both indomethacin and NLA, bradykinin evoked transient and concentration-dependent hyperpolarizations only in tissues with endothelium, which were augmented by perindoprilat and mimicked by the calcium ionophore A23187. Glibenclamide did not inhibit membrane hyperpolarization to bradykinin. In rings contracted with prostaglandin F2 alpha, the cumulative addition of bradykinin caused a concentration-dependent relaxation during contractions evoked by prostaglandin F2 alpha, which was not abolished by NLA and indomethacin. The present findings demonstrate the occurrence of endothelium-dependent hyperpolarization, and its contribution to endothelium-dependent relaxations, in the human coronary artery.
M Nakashima, J V Mombouli, A A Taylor, P M Vanhoutte
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 135 | 0 |
57 | 20 | |
Scanned page | 143 | 5 |
Citation downloads | 44 | 0 |
Totals | 379 | 25 |
Total Views | 404 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.