Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (26)

Advertisement

Research Article Free access | 10.1172/JCI116902

Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment.

L C Jefferies, C M Carchidi, and L E Silberstein

Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia 19104.

Find articles by Jefferies, L. in: PubMed | Google Scholar

Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia 19104.

Find articles by Carchidi, C. in: PubMed | Google Scholar

Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia 19104.

Find articles by Silberstein, L. in: PubMed | Google Scholar

Published December 1, 1993 - More info

Published in Volume 92, Issue 6 on December 1, 1993
J Clin Invest. 1993;92(6):2821–2833. https://doi.org/10.1172/JCI116902.
© 1993 The American Society for Clinical Investigation
Published December 1, 1993 - Version history
View PDF
Abstract

In the current study, we wished to determine if the V regions encoding the naturally occurring anti-i/I Cold Agglutinins (anti-i/I CA) differ from pathogenic anti-i/I CA that are exclusively encoded by the VH4.21 gene. After EBV transformation of B lymphocytes, we generated one anti-I secreting clone from each of two individuals; clone 4G (individual CM, PBL) and clone Sp1 (individual SC, spleen). Clone 4G expresses a VH3 gene sequence that is 92% homologous to the germline gene WHG26. Clone Sp1 also expresses a VH3 gene that is 98% homologous to the fetally rearranged M85/20P1 gene. Another clone, Sp2 (anti-i specificity), from individual SC is 98% homologous to the germline gene VH4.21. For correlation, we studied anti-i/I CA fractions purified from 15 normal sera and found no or relatively small amounts of 9G4 (VH4.21 related idiotype) reactive IgM. Five cold agglutinin fractions contained large amounts of VH3-encoded IgM (compared to pooled normal IgM) by virtue of their binding to modified protein Staph A (SPA), and absorption of three CA fractions with modified SPA specifically removed anti-i/I binding specificity entirely. Collectively, the data indicate that naturally occurring anti-i/I CA may be encoded to a large extent by non-VH4.21-related genes, and that the VH4.21 gene is not uniquely required for anti-i/I specificity.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2821
page 2821
icon of scanned page 2822
page 2822
icon of scanned page 2823
page 2823
icon of scanned page 2824
page 2824
icon of scanned page 2825
page 2825
icon of scanned page 2826
page 2826
icon of scanned page 2827
page 2827
icon of scanned page 2828
page 2828
icon of scanned page 2829
page 2829
icon of scanned page 2830
page 2830
icon of scanned page 2831
page 2831
icon of scanned page 2832
page 2832
icon of scanned page 2833
page 2833
Version history
  • Version 1 (December 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (26)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts