Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (26)

Advertisement

Research Article Free access | 10.1172/JCI116876

Release of ceramide after membrane sphingomyelin hydrolysis decreases the basolateral secretion of triacylglycerol and apolipoprotein B in cultured human intestinal cells.

F J Field, H Chen, E Born, B Dixon, and S Mathur

Department of Internal Medicine, University of Iowa, Iowa City.

Find articles by Field, F. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Iowa, Iowa City.

Find articles by Chen, H. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Iowa, Iowa City.

Find articles by Born, E. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Iowa, Iowa City.

Find articles by Dixon, B. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Iowa, Iowa City.

Find articles by Mathur, S. in: JCI | PubMed | Google Scholar

Published December 1, 1993 - More info

Published in Volume 92, Issue 6 on December 1, 1993
J Clin Invest. 1993;92(6):2609–2619. https://doi.org/10.1172/JCI116876.
© 1993 The American Society for Clinical Investigation
Published December 1, 1993 - Version history
View PDF
Abstract

The effect of sphingomyelin hydrolysis on triacylglycerol-rich lipoprotein secretion was examined in the human intestinal cell line, CaCo-2. Addition of sphingomyelinase decreased sphingomyelin and phosphatidylethanolamine by 60 and 20%, respectively. Sphingomyelin hydrolysis decreased the basolateral secretion of triacylglycerol mass, newly synthesized triacylglycerol, and apo B mass. Pulse-chase experiments with [35S]methionine demonstrated a decrease in apo B synthesis and a marked decrease in apo B100 and apo B48 secretion without altering apo A1 secretion. Sphingomyelin hydrolysis did not change apo B mRNA levels nor apo B turnover. Phosphatidylcholine-specific phospholipase C did not decrease apo B synthesis or its basolateral secretion. Membrane protein kinase C (PKC) activity was decreased twofold after sphingomyelin hydrolysis. The PKC inhibitor staurosporine decreased apo B mass and newly synthesized apo B secretion. Sphingomyelinase and staurosporine together caused an additional decrease in apo B secretion suggesting that sphingomyelin hydrolysis decreased apo B secretion independently of its effect on PKC activity. Moreover, conditions that increase PKC activity did not increase apo B secretion. Cell-permeable analogs of ceramide decreased immunoreactive apo B secretion. Sphingosine was without effect. The hydrolysis of membrane sphingomyelin by intestinal or pancreatic neutral sphingomyelinase may lead to the accumulation of cellular ceramide, which, in turn, could inhibit triacylglycerol-rich lipoprotein secretion.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2609
page 2609
icon of scanned page 2610
page 2610
icon of scanned page 2611
page 2611
icon of scanned page 2612
page 2612
icon of scanned page 2613
page 2613
icon of scanned page 2614
page 2614
icon of scanned page 2615
page 2615
icon of scanned page 2616
page 2616
icon of scanned page 2617
page 2617
icon of scanned page 2618
page 2618
icon of scanned page 2619
page 2619
Version history
  • Version 1 (December 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (26)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts