Polymers used in implantable devices, although relatively unreactive, may degrade in vivo through unknown mechanisms. For example, polyetherurethane elastomers used as cardiac pacemaker lead insulation have developed surface defects after implantation. This phenomenon, termed "environmental stress cracking," requires intimate contact between polymer and host phagocytic cells, suggesting that phagocyte-generated oxidants might be involved. Indeed, brief exposure of polyetherurethane to activated human neutrophils, hypochlorous acid, or peroxynitrite produces modifications of the polymer similar to those found in vivo. Damage to the polymer appears to arise predominantly from oxidation of the urethane-aliphatic ester and aliphatic ether groups. There are substantial increases in the solid phase surface oxygen content of samples treated with hypochlorous acid, peroxynitrite or activated human neutrophils, resembling those observed in explanted polyetherurethane. Furthermore, both explanted and hypochlorous acid-treated polyetherurethane show marked reductions in polymer molecular weight. Interestingly, hypochlorous acid and peroxynitrite appear to attack polyetherurethane at different sites. Hypochlorous acid or activated neutrophils cause decreases in the urethane-aliphatic ester stretch peak relative to the aliphatic ether stretch peak (as determined by infrared spectroscopy) whereas peroxynitrite causes selective loss of the aliphatic ether. In vivo degradation may involve both hypohalous and nitric oxide-based oxidants because, after long-term implantation, both stretch peaks are diminished. These results suggest that in vivo destruction of implanted polyetherurethane involves attack by phagocyte-derived oxidants.
K Sutherland, J R Mahoney 2nd, A J Coury, J W Eaton
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 196 | 10 |
61 | 33 | |
Scanned page | 244 | 9 |
Citation downloads | 49 | 0 |
Totals | 550 | 52 |
Total Views | 602 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.