Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (48)

Advertisement

Research Article Free access | 10.1172/JCI116732

Triamcinolone and prednisolone affect contractile properties and histopathology of rat diaphragm differently.

P N Dekhuijzen, G Gayan-Ramirez, V de Bock, R Dom, and M Decramer

Respiratory Muscle Research Unit, University Hospital, Katholieke Universiteit Leuven, Belgium.

Find articles by Dekhuijzen, P. in: PubMed | Google Scholar

Respiratory Muscle Research Unit, University Hospital, Katholieke Universiteit Leuven, Belgium.

Find articles by Gayan-Ramirez, G. in: PubMed | Google Scholar

Respiratory Muscle Research Unit, University Hospital, Katholieke Universiteit Leuven, Belgium.

Find articles by de Bock, V. in: PubMed | Google Scholar

Respiratory Muscle Research Unit, University Hospital, Katholieke Universiteit Leuven, Belgium.

Find articles by Dom, R. in: PubMed | Google Scholar

Respiratory Muscle Research Unit, University Hospital, Katholieke Universiteit Leuven, Belgium.

Find articles by Decramer, M. in: PubMed | Google Scholar

Published September 1, 1993 - More info

Published in Volume 92, Issue 3 on September 1, 1993
J Clin Invest. 1993;92(3):1534–1542. https://doi.org/10.1172/JCI116732.
© 1993 The American Society for Clinical Investigation
Published September 1, 1993 - Version history
View PDF
Abstract

Diaphragm atrophy and weakness occur after administration of massive doses of corticosteroids for short periods. In the present study the effects of prolonged administration of moderate doses of fluorinated and nonfluorinated steroids were investigated on contractile properties and histopathology of rat diaphragm. 60 rats received saline, 1.0 mg/kg triamcinolone, or 1.25 or 5 mg/kg i.m. prednisolone daily for 4 wk. Respiratory and peripheral muscle mass increased similarly in control and both prednisolone groups, whereas triamcinolone caused severe muscle wasting. Maximal tetanic tension averaged 2.23 +/- 0.54 kg/cm2 (SD) in the control group. An increased number of diaphragmatic bundles in the 5-mg/kg prednisolone group generated maximal tetanic tensions < 2.0 kg/cm2 (P < 0.05). In addition, fatigability during the force-frequency protocol was most pronounced in this group (P < 0.05). In contrast, triamcinolone caused a prolonged half-relaxation time and a leftward shift of the force-frequency curve (P < 0.05). Histological examination of the diaphragm showed a normal pattern in the control and 1.25-mg/kg prednisolone group. Myogenic changes, however, were found in the 5-mg/kg prednisolone group and, more pronounced, in the triamcinolone group. Selective type IIb fiber atrophy was found in the latter group, but not in the prednisolone groups. In conclusion, triamcinolone induced type IIb fiber atrophy, resulting in reduced respiratory muscle strength and a leftward shift of the force-frequency curve. In contrast, 5 mg/kg prednisolone caused alterations in diaphragmatic contractile properties and histological changes without fiber atrophy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1534
page 1534
icon of scanned page 1535
page 1535
icon of scanned page 1536
page 1536
icon of scanned page 1537
page 1537
icon of scanned page 1538
page 1538
icon of scanned page 1539
page 1539
icon of scanned page 1540
page 1540
icon of scanned page 1541
page 1541
icon of scanned page 1542
page 1542
Version history
  • Version 1 (September 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (48)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts