Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The effect of histamine and cyclic adenosine monophosphate on myosin light chain phosphorylation in human umbilical vein endothelial cells.
A B Moy, … , B D Scott, D M Shasby
A B Moy, … , B D Scott, D M Shasby
Published September 1, 1993
Citation Information: J Clin Invest. 1993;92(3):1198-1206. https://doi.org/10.1172/JCI116690.
View: Text | PDF
Research Article

The effect of histamine and cyclic adenosine monophosphate on myosin light chain phosphorylation in human umbilical vein endothelial cells.

  • Text
  • PDF
Abstract

Histamine causes adjacent endothelial cells to retract from each another. We examined phosphorylation of the 20-kD myosin light chain (MLC20) in human umbilical vein endothelial cells (HUVECs) exposed to histamine to determine if we could find evidence to support the hypothesis that retraction of these cells in response to histamine represents an actomyosin-initiated contraction of the endothelial cytoskeleton. We found that MLC20 in HUVECs was constitutively phosphorylated with approximately 0.2 mol phosphate/mol MLC20. Histamine increased MLC20 phosphorylation by 0.18 +/- 0.05 mol phosphate/mol MLC20. This peak increase in phosphorylation occurred 30 s after initiating histamine exposure, persisted through 90s, and returned to control levels by 5 min. Agents that increase HUVEC cAMP prevent cell retraction in response to histamine. An increase in HUVEC cAMP decreased MLC20 phosphorylation by 0.18 +/- 0.02 mol phosphate/mol MLC20 and prevented the increase in MLC20 phosphorylation after exposure to histamine. Tryptic peptide maps of phosphorylated myosin light chain indicated that myosin light chain kinase phosphorylated MLC20 in HUVECs under basal, cAMP-, and histamine-stimulated conditions. Phosphoaminoacid analysis of the monophosphorylated peptide indicated that, in contrast to smooth muscle cells, ser19 and thr18 monophosphorylation occurs in HUVECs. On the basis of our results, modulation of myosin light chain kinase activity may be an important regulatory step in the control of endothelial barrier function.

Authors

A B Moy, S S Shasby, B D Scott, D M Shasby

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 183 3
PDF 51 13
Figure 0 3
Scanned page 389 4
Citation downloads 60 0
Totals 683 23
Total Views 706
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts