Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (200)

Advertisement

Research Article Free access | 10.1172/JCI116681

Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes.

L Rossetti, A Giaccari, N Barzilai, K Howard, G Sebel, and M Hu

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Rossetti, L. in: PubMed | Google Scholar

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Giaccari, A. in: PubMed | Google Scholar

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Barzilai, N. in: PubMed | Google Scholar

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Howard, K. in: PubMed | Google Scholar

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Sebel, G. in: PubMed | Google Scholar

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Hu, M. in: PubMed | Google Scholar

Published September 1, 1993 - More info

Published in Volume 92, Issue 3 on September 1, 1993
J Clin Invest. 1993;92(3):1126–1134. https://doi.org/10.1172/JCI116681.
© 1993 The American Society for Clinical Investigation
Published September 1, 1993 - Version history
View PDF
Abstract

To examine the relationship between the plasma glucose concentration (PG) and the pathways of hepatic glucose production (HGP), five groups of conscious rats were studied after a 6-h fast: (a) control rats (PG = 8.0 +/- 0.2 mM); (b) control rats (PG = 7.9 +/- 0.2 mM) with somatostatin and insulin replaced at the basal level; (c) control rats (PG = 18.1 +/- 0.2 mM) with somatostatin, insulin replaced at the basal level, and glucose infused to acutely raise plasma glucose by 10 mM; (d) control rats (PG = 18.0 +/- 0.2 mM) with somatostatin and glucose infusions to acutely reproduce the metabolic conditions of diabetic rats, i.e., hyperglycemia and moderate hypoinsulinemia; (e) diabetic rats (PG = 18.4 +/- 2.3 mM). All rats received an infusion of [3-3H]glucose and [U-14C]lactate. The ratio between hepatic [14C]UDP-glucose sp act (SA) and 2X [14C]-phosphoenolpyruvate (PEP) SA (the former reflecting glucose-6-phosphate SA) measured the portion of total glucose output derived from PEP-gluconeogenesis. In control rats, HGP was decreased by 58% in hyperglycemic compared to euglycemic conditions (4.5 +/- 0.3 vs. 10.6 +/- 0.2 mg/kg.min; P < 0.01). When evaluated under identical glycemic conditions, HGP was significantly increased in diabetic rats (18.9 +/- 1.4 vs. 6.2 +/- 0.4 mg/kg.min; P < 0.01). In control rats, hyperglycemia increased glucose cycling (by 2.5-fold) and the contribution of gluconeogenesis to HGP (91% vs. 45%), while decreasing that of glycogenolysis (9% vs. 55%). Under identical plasma glucose and insulin concentrations, glucose cycling in diabetic rats was decreased (by 21%) and the percent contribution of gluconeogenesis to HGP (73%) was similar to that of controls (84%). These data indicate that: (a) hyperglycemia causes a marked inhibition of HGP mainly through the suppression of glycogenolysis and the increase in glucokinase flux, with no apparent changes in the fluxes through gluconeogenesis and glucose-6-phosphatase; under similar hyperglycemic hypoinsulinemic conditions: (b) HGP is markedly increased in diabetic rats; however, (c) the contribution of glycogenolysis and gluconeogenesis to HGP is similar to control animals.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1126
page 1126
icon of scanned page 1127
page 1127
icon of scanned page 1128
page 1128
icon of scanned page 1129
page 1129
icon of scanned page 1130
page 1130
icon of scanned page 1131
page 1131
icon of scanned page 1132
page 1132
icon of scanned page 1133
page 1133
icon of scanned page 1134
page 1134
Version history
  • Version 1 (September 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (200)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts