Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (147)

Advertisement

Research Article Free access | 10.1172/JCI116662

Small elevations of glucose concentration redirect and amplify the synthesis of guanosine 5'-triphosphate in rat islets.

S A Metz, M Meredith, M E Rabaglia, and A Kowluru

Department of Medicine, University of Wisconsin, Madison 53792.

Find articles by Metz, S. in: PubMed | Google Scholar

Department of Medicine, University of Wisconsin, Madison 53792.

Find articles by Meredith, M. in: PubMed | Google Scholar

Department of Medicine, University of Wisconsin, Madison 53792.

Find articles by Rabaglia, M. in: PubMed | Google Scholar

Department of Medicine, University of Wisconsin, Madison 53792.

Find articles by Kowluru, A. in: PubMed | Google Scholar

Published August 1, 1993 - More info

Published in Volume 92, Issue 2 on August 1, 1993
J Clin Invest. 1993;92(2):872–882. https://doi.org/10.1172/JCI116662.
© 1993 The American Society for Clinical Investigation
Published August 1, 1993 - Version history
View PDF
Abstract

Recent studies suggest a permissive requirement for guanosine 5'-triphosphate (GTP) in insulin release, based on the use of GTP synthesis inhibitors (such as myocophenolic acid) acting at inosine monophosphate (IMP) dehydrogenase; herein, we examine the glucose dependency of GTP synthesis. Mycophenolic acid inhibited insulin secretion equally well after islet culture at 7.8 or 11.1 mM glucose (51% inhibition) but its effect was dramatically attenuated when provided at < or = 6.4 mM glucose (13% inhibition; P < 0.001). These observations were explicable by a stimulation of islet GTP synthesis derived from IMP since, at high glucose: (a) total GTP content was augmented; (b) a greater decrement in GTP (1.75 vs. 1.05 pmol/islet) was induced by mycophenolic acid; and (c) a smaller "pool" of residual GTP persisted after drug treatment. Glucose also accelerated GTP synthesis from exogenous guanine ("salvage" pathway) and increased content of a pyrimidine, uridine 5'-triphosphate (UTP), suggesting that glucose augments production of a common regulatory intermediate (probably 5-phosphoribosyl-1-pyrophosphate). Pathway-specific radiolabeling studies confirmed that glucose tripled both salvage and de novo synthesis of nucleotides. We conclude that steep changes in the biosynthesis of cytosolic pools of GTP occur at modest changes in glucose concentrations, a finding which may have relevance to the adaptive (patho) physiologic responses of islets to changes in ambient glucose levels.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 872
page 872
icon of scanned page 873
page 873
icon of scanned page 874
page 874
icon of scanned page 875
page 875
icon of scanned page 876
page 876
icon of scanned page 877
page 877
icon of scanned page 878
page 878
icon of scanned page 879
page 879
icon of scanned page 880
page 880
icon of scanned page 881
page 881
icon of scanned page 882
page 882
Version history
  • Version 1 (August 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (147)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts