Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (49)

Advertisement

Research Article Free access | 10.1172/JCI116628

Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1.

P S Becker, W T Tse, S E Lux, and B G Forget

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Becker, P. in: PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Tse, W. in: PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Lux, S. in: PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Forget, B. in: PubMed | Google Scholar

Published August 1, 1993 - More info

Published in Volume 92, Issue 2 on August 1, 1993
J Clin Invest. 1993;92(2):612–616. https://doi.org/10.1172/JCI116628.
© 1993 The American Society for Clinical Investigation
Published August 1, 1993 - Version history
View PDF
Abstract

We analyzed the DNA sequence of the cDNA encoding the NH2 terminal region of beta spectrin from members of a kindred with autosomal dominant hereditary spherocytosis associated with defective protein 4.1 binding. We found a point mutation at codon 202 within the 272 amino acid NH2-terminal region of beta spectrin. TGG was changed to CGG, resulting in the replacement of tryptophan by arginine. The base change eliminates a normally occurring PvuII restriction site and creates a new MspI site. This finding enabled rapid detection or exclusion of the mutation at the DNA level among the family members, including one member for whom this analysis was performed prenatally. The mutation was found only in the affected family members and occurred as a de novo mutation in the proband. It has not been found in 20 other kindreds. The recombinant peptide derived from the normal cDNA retains the capacity to sediment with protein 4.1 and F-actin. The mutant peptide spontaneously degrades. This variant represents both the first point mutation and the first beta spectrin mutation demonstrated in autosomal dominant hereditary spherocytosis. Furthermore, the mutation is located within a conserved sequence among spectrinlike proteins and may define an amino acid critical for protein 4.1 binding activity.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 612
page 612
icon of scanned page 613
page 613
icon of scanned page 614
page 614
icon of scanned page 615
page 615
icon of scanned page 616
page 616
Version history
  • Version 1 (August 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (49)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts