Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (105)

Advertisement

Research Article Free access | 10.1172/JCI116587

Transient elevations of cytosolic free calcium retard subsequent apoptosis in neutrophils in vitro.

M K Whyte, S J Hardwick, L C Meagher, J S Savill, and C Haslett

Department of Medicine (Respiratory Division), Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Find articles by Whyte, M. in: JCI | PubMed | Google Scholar

Department of Medicine (Respiratory Division), Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Find articles by Hardwick, S. in: JCI | PubMed | Google Scholar

Department of Medicine (Respiratory Division), Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Find articles by Meagher, L. in: JCI | PubMed | Google Scholar

Department of Medicine (Respiratory Division), Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Find articles by Savill, J. in: JCI | PubMed | Google Scholar

Department of Medicine (Respiratory Division), Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Find articles by Haslett, C. in: JCI | PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):446–455. https://doi.org/10.1172/JCI116587.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

Elevation of cytosolic calcium ([Ca2+]i) has been reported to induce apoptosis in a number of cell types. However, in the neutrophil, which undergoes apoptosis constitutively during aging in vitro, activation by inflammatory mediators elevates [Ca2+]i and prolongs lifespan via inhibition of apoptosis. To examine this paradox, we investigated the effects of modulation of [Ca2+]i upon apoptosis of neutrophils in vitro. Calcium ionophores (A23187, ionomycin) retarded apoptosis in neutrophil populations after 20 h (P < 0.001). Conversely, intracellular Ca(2+)-chelation, using bis-(o-aminophenoxy)-N,N,N'N'-tetraacetic acid (BAPTA) acetoxymethyl ester (AM) promoted apoptosis (P < 0.02). W-7 (an inhibitor of calmodulin) also promoted apoptosis (P < 0.05). Measurements of [Ca2+]i, using fura-2, showed (a) increased apoptosis in neutrophil populations was not associated with elevated [Ca2+]i, (b) neutrophils cultured with ionophore at concentrations inhibiting apoptosis exhibited transient (< 1 h) elevations of [Ca2+]i, to levels previously reported with receptor-mediated stimuli, and (c) BAPTA was able to prevent the elevation of [Ca2+]i and the inhibition of apoptosis produced by ionophore. Modulation of apoptosis occurred without alterations in intracellular pH. Thus, in the neutrophil, unlike lymphoid cells, elevation of [Ca2+]i exerts an inhibitory effect upon apoptosis. Furthermore, these data suggest that transient elevation of [Ca2+]i elicits signaling events leading to prolonged inhibition of apoptosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
icon of scanned page 451
page 451
icon of scanned page 452
page 452
icon of scanned page 453
page 453
icon of scanned page 454
page 454
icon of scanned page 455
page 455
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (105)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts