Intracellular alkalinization is known to be associated with tumorigenic transformation. Besides phenotypical alterations alkali-transformed Madin-Darby canine kidney (MDCK) cells exhibit a spontaneously oscillating cell membrane potential (PD). Using single-channel patch clamp techniques, it was the aim of this study to identify the ion channel underlying the rhythmic hyperpolarizations of the PD. In the cell-attached patch configuration, we found that channel activity was oscillating. The frequency of channel oscillations is 1.1 +/- 0.1 min-1. At the peak of oscillatory channel activity, single-channel current was -2.7 +/- 0.05 pA, and in the resting state it was -1.95 +/- 0.05 pA. Given the single-channel conductance of 53 +/- 3 pS for inward (and of 27 +/- 5 pS for outward) current the difference of single-channel current amplitude corresponded to a hyperpolarization of approximately 14 mV. The channel is selective for K+ over Na+. Channel kinetics are characterized by one open and by three closed time constants. The channel is Ca2+ sensitive. Half maximal activation in the inside-out patch mode is achieved at a Ca2+ concentration of 10 mumol/liter. In addition, we also found a 13-pS K+ channel that shows no oscillatory activity in the cell-attached patch configuration and that was not Ca2+ sensitive. We conclude that the Ca(2+)-sensitive 53-pS K+ channel is underlying spontaneous oscillations of the PD. It has virtually identical biophysical properties as a Ca(2+)-sensitive K+ channel in nontransformed parent MDCK cells. Hence, alkali-induced transformation of MDCK cells did not affect the channel protein itself but its regulators thereby causing spontaneous fluctuations of the PD.
A Schwab, H J Westphale, L Wojnowski, S Wünsch, H Oberleithner
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 82 | 2 |
42 | 16 | |
Scanned page | 187 | 3 |
Citation downloads | 48 | 0 |
Totals | 359 | 21 |
Total Views | 380 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.