Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (144)

Advertisement

Research Article Free access | 10.1172/JCI116544

Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance.

M Castro Cabezas, T W de Bruin, H W de Valk, C C Shoulders, H Jansen, and D Willem Erkelens

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by Castro Cabezas, M. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by de Bruin, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by de Valk, H. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by Shoulders, C. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by Jansen, H. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University Hospital, Utrecht, The Netherlands.

Find articles by Willem Erkelens, D. in: JCI | PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):160–168. https://doi.org/10.1172/JCI116544.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

To establish whether insulin resistance and/or postprandial fatty acid metabolism might contribute to familial combined hyperlipidemia (FCH) we have examined parameters of insulin resistance and lipid metabolism in six FCH kindreds. Probands and relatives (n = 56) were divided into three tertiles on the basis of fasting plasma triglycerides (TG). Individuals in the highest tertile (TG > 2.5 mM; n = 14) were older and had increased body mass index, systolic blood pressure, and fasting plasma insulin concentrations compared with individuals in the lowest tertile (n = 24). The former also presented with decreased HDL cholesterol and increased total plasma cholesterol, HDL-TG, and apoprotein B, E, and CIII concentrations. Insulin concentrations were positively correlated with plasma apo B, apo CIII, apo E, and TG, and inversely with HDL cholesterol. Fasting nonesterified fatty acids (NEFA) were elevated in FCH subjects compared to six unrelated controls and five subjects with familial hypertriglyceridemia. Prolonged and exaggerated postprandial plasma NEFA concentrations were found in five hypertriglyceridemic FCH probands. In FCH the X2 minor allele of the AI-CIII-AIV gene cluster was associated with increased fasting plasma TG, apo CIII, apo AI, and NEFA concentrations and decreased postheparin lipolytic activities. The clustering of risk factors associated with insulin resistance in FCH indicates a common metabolic basis for the FCH phenotype and the syndrome of insulin resistance probably mediated by an impaired fatty acid metabolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 160
page 160
icon of scanned page 161
page 161
icon of scanned page 162
page 162
icon of scanned page 163
page 163
icon of scanned page 164
page 164
icon of scanned page 165
page 165
icon of scanned page 166
page 166
icon of scanned page 167
page 167
icon of scanned page 168
page 168
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (144)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts