Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A vitamin D analogue (EB1089) inhibits parathyroid hormone-related peptide production and prevents the development of malignancy-associated hypercalcemia in vivo.
M Haq, … , D Goltzman, S A Rabbani
M Haq, … , D Goltzman, S A Rabbani
Published June 1, 1993
Citation Information: J Clin Invest. 1993;91(6):2416-2422. https://doi.org/10.1172/JCI116475.
View: Text | PDF
Research Article

A vitamin D analogue (EB1089) inhibits parathyroid hormone-related peptide production and prevents the development of malignancy-associated hypercalcemia in vivo.

  • Text
  • PDF
Abstract

We have examined the effects of 1,25 dihydroxyvitamin D3 (1,25[OH]2D3) and a low calcemic analogue EB1089 on parathyroid hormone-related peptide (PTHRP) production and on the development of hypercalcemia in Fischer rats implanted with the Leydig cell tumor H-500. Leydig cell tumors were implanted subcutaneously into male Fischer rats, which received constant infusions intraperitoneally of either 1,25(OH)2D3 (50-200 pmol/24 h), EB1089 (50-400 pmol/24 h), or vehicle for up to 4 wk. A control group of animals received similar infusions without tumor implantation. Plasma calcium, plasma levels of immunoreactive iPTHRP, and tumor PTHRP mRNA levels were determined as well as tumor size, animal body weight, and animal survival time. Non-tumor-bearing animals receiving > 50 pmol/24 h of 1,25(OH)2D3 became hypercalcemic, whereas no significant change in plasma calcium was observed in animals receiving < or = 200 pmol/24 h of EB1089. Tumor-bearing animals receiving vehicle alone or > 50 pmol/24 h of 1,25(OH)2D3 became severely hypercalcemic within 15 d. However, animals treated with low dose 1,25(OH)2D3 and all doses of EB1089 maintained near-normal or normal levels of plasma calcium for up to 4 wk. Additionally, reduced levels of tumor PTHRP mRNA and of plasma iPTHRP were observed compared with controls in both vitamin D- and EB1089-treated rats. Infusion of 50 pmol/24 h of 1,25(OH)2D3 and 200 pmol/24 h of EB1089 significantly reduced tumor volume by the end of experiment. The analogue but not 1,25(OH)2D3 substantially prolonged survival time in tumor-bearing animals with longer survival achieved at the highest dose, 400 pmol/24 h, of EB1089. These studies demonstrate that 1,25(OH)2D3 and a low calcemic vitamin D analogue are potent inhibitors of PTHRP production in vivo. Low calcemic analogues may therefore represent important alternative therapy for malignancy-associated hypercalcemia.

Authors

M Haq, R Kremer, D Goltzman, S A Rabbani

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 173 3
PDF 86 13
Scanned page 246 1
Citation downloads 64 0
Totals 569 17
Total Views 586
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts