Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Identification of the human NHE-1 form of Na(+)-H+ exchanger in rabbit renal brush border membranes.
E J Weinman, … , D Corry, S Shenolikar
E J Weinman, … , D Corry, S Shenolikar
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):2097-2102. https://doi.org/10.1172/JCI116433.
View: Text | PDF
Research Article Article has an altmetric score of 10

Identification of the human NHE-1 form of Na(+)-H+ exchanger in rabbit renal brush border membranes.

  • Text
  • PDF
Abstract

To study the relation between the human Na(+)-H+ exchanger (NHE-1) and the renal brush border membrane (BBM) Na(+)-H+ exchanger, polyclonal antibodies to synthetic peptides representing a putative external (Ab-E) and an internal cytosolic domain (Ab-I) of human NHE-1 were generated in rabbits. Western immunoblot analyses indicated that both antibodies recognized a 97-kD protein in rabbit renal BBM but not basolateral membranes (BLM). Octyl glucoside-extracted rabbit renal BBM proteins also contained the 97-kD polypeptide as did a fraction eluted from an anion-exchange column with 0.2 M NaCl (fraction A). A fraction eluting between 0.2 and 0.4 M NaCl (fraction B) did not contain this protein. Prior reconstitution studies have indicated that Na(+)-H+ exchange activity is higher significantly in fraction B than fraction A. Administration of NH4Cl for 3-7 d to rabbits, a stimulus known to increase renal BBM Na(+)-H+ exchange activity, did not result in a change in expression of the 97-kD protein in either renal BBM or BLM. The results indicate that affinity-purified polyclonal antibodies to two separate domains of the human Na(+)-H+ exchanger recognize a 97-kD protein in rabbit renal BBM but not BLM. The dissociation between recognition of the 97-kD protein using antibodies and the majority of functional Na(+)-H+ exchange activity after chromatographic fractionation of solubilized BBM proteins and in native BBM after administration of NH4Cl suggest that rabbit renal BBM contains more than one form of Na(+)-H+ exchanger.

Authors

E J Weinman, D Steplock, D Corry, S Shenolikar

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 90 1
PDF 53 9
Scanned page 226 4
Citation downloads 48 0
Totals 417 14
Total Views 431
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 1 patents
19 readers on Mendeley
See more details