To test the hypothesis that glucocorticoid-induced insulin resistance might originate from abnormalities in insulin receptor signaling, we investigated the effects of glucocorticoids on in vivo tyrosine phosphorylation of the insulin receptor and the insulin receptor substrate IRS-1 in rat skeletal muscle. Male Sprague-Dawley rats were treated with cortisone (100 mg/kg for 5 d) and compared to pair-fed controls. Cortisone treatment of rats resulted in both hyperglycemia and hyperinsulinemia. Anesthetized animals were injected with 10 U/kg insulin via cardiac puncture and, after 2 min, hindlimb muscles were removed, snap-frozen, and homogenized in SDS. Protein tyrosine phosphorylation was studied by immunoblotting with phosphotyrosine antibody. Insulin receptors and substrate IRS-1 were identified and quantified with specific antibodies. Cortisone treatment increased the amount of insulin receptor protein by 36%, but decreased the total level of receptor tyrosine phosphorylation (69 +/- 4% of control, P < 0.05). The decreased level of receptor phosphorylation was explained by a reduced number of receptors containing phosphorylated tyrosine residues (64.6 +/- 5% of control, P < 0.05). Glucocorticoid excess decreased skeletal muscle IRS-1 content by 50%, but did not significantly alter the total level of IRS-1 tyrosine phosphorylation. The apparent M(r) of IRS-1 was reduced by approximately 10 kD. Treatment with protein phosphatase-2A reduced IRS-1 M(r) in control but not in glucocorticoid-treated muscle indicating that the lower M(r) likely results from lower phosphoserine and/or phosphothreonine content. To investigate the role of hyperinsulinemia in the glucocorticoid response, rats were made insulin-deficient with streptozotocin (100 mg/kg, i.p.). Subsequent treatment with cortisone for 5 d had no effects on insulin levels, tyrosine phosphorylation of insulin receptors or IRS-1, or the M(r) of IRS-1. In conclusion, glucocorticoid-treated skeletal muscle is characterized by: (a) decreased total tyrosine phosphorylation of insulin receptors as a result of a reduction in the pool of receptors undergoing tyrosine phosphorylation; (b) decreased IRS-1 content and reduced serine and/or threonine phosphorylation of IRS-1. Glucocorticoid-induced hyperinsulinemia appears to be essential for the development of these alterations.
F Giorgino, A Almahfouz, L J Goodyear, R J Smith
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 335 | 18 |
61 | 23 | |
Figure | 0 | 6 |
Scanned page | 426 | 3 |
Citation downloads | 51 | 0 |
Totals | 873 | 50 |
Total Views | 923 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.