Influenza A viruses (IAVs) cause substantial morbidity and mortality in yearly epidemics, which result from the ability of the virus to alter the antigenicity of its envelope proteins. Despite the rapid replication of this virus and its ability to infect a wide variety of cell types, viremia is rare and the infection is generally limited to the upper respiratory tract. The preimmune host defense response against IAV is generally, therefore, successful. We have previously provided (and summarized) evidence that neutrophils contribute to defense against IAV, although neutrophil dysfunction and local tissue damage may be less salutory byproducts of this response. Here we provide evidence that the serum lectin mannose-binding protein directly inhibits hemagglutinin activity and infectivity of several strains of IAV. In addition mannose-binding protein acts as an opsonin, enhancing neutrophil reactivity against IAV. Opsonization of IAV by mannose-binding protein also protects the neutrophil from IAV-induced dysfunction. These effects are observed with physiologically relevant concentrations of mannose-binding protein. Two different allelic forms of recombinant mannose-binding protein are found to have similar effects. We believe, on the basis of these data, that mannose-binding protein alone and in conjunction with phagocytic cells is an important constituent of natural immunity (i.e., preimmune defense) against IAV.
K L Hartshorn, K Sastry, M R White, E M Anders, M Super, R A Ezekowitz, A I Tauber
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 177 | 2 |
56 | 27 | |
Scanned page | 223 | 3 |
Citation downloads | 42 | 0 |
Totals | 498 | 32 |
Total Views | 530 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.