Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (38)

Advertisement

Research Article Free access | 10.1172/JCI116328

Mechanism of enhanced Na-K-ATPase activity in cortical collecting duct from rats with nephrotic syndrome.

E Féraille, B Vogt, M Rousselot, C Barlet-Bas, L Cheval, A Doucet, and H Favre

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Féraille, E. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Vogt, B. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Rousselot, M. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Barlet-Bas, C. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Cheval, L. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Doucet, A. in: PubMed | Google Scholar

Division de Néphrologie, Hôpital Cantonal Universitaire de Genève, Switzerland.

Find articles by Favre, H. in: PubMed | Google Scholar

Published April 1, 1993 - More info

Published in Volume 91, Issue 4 on April 1, 1993
J Clin Invest. 1993;91(4):1295–1300. https://doi.org/10.1172/JCI116328.
© 1993 The American Society for Clinical Investigation
Published April 1, 1993 - Version history
View PDF
Abstract

The maximal hydrolytic activity of Na-K-ATPase is specifically increased in the cortical collecting duct (CCD) of rats with puromycin-induced nephrotic syndrome (NS). This stimulation is independent of aldosterone and of endogenous ouabain-like substance. To investigate the mechanism responsible for this change, we compared the maximal Na-K-ATPase hydrolytic activity, the ouabain sensitive 86Rb influx, the specific [3H]ouabain binding, and the sensitivity of Na-K-ATPase to ouabain in the CCD of control rats and of rats given an intraperitoneal injection of puromycin 7 d before study. Both Na-K-ATPase activity and ouabain-sensitive 86Rb influx increased two-fold in rats with NS (ATPase activity: 34.1 +/- 2.1 vs. 18.0 +/- 0.7 pmol.mm-1 x min-1 +/- SE, n = 6, P < 0.001; Rb influx: 14.4 +/- 0.7 vs. 7.4 +/- 0.4 peq.min-1 +/- SE, n = 6, P < 0.001) whereas specific [3H]ouabain binding decreased in rats with NS (6.9 +/- 0.7 vs. 9.0 +/- 0.6 fmol.mm-1 +/- SE, n = 6, P < 0.005). Therefore, the maximal turnover rate of Na-K-ATPase increased over twofold in rats with NS (5,053 +/- 361 vs. 2,043 +/- 124 cycles.min-1 +/- SE, n = 6, P < 0.001). Analysis of the curves of inhibition of Na-K-ATPase by ouabain showed the presence of two Na-K-ATPase populations in both control and NS rats: a highly sensitive population (apparent Ki: 1.4 x 10(-6) M and 0.9 x 10(-6) M) and a less sensitive moiety (apparent Ki: 2.6 x 10(-4) M and 1.1 x 10(-4) M). The enhancement of Na-K-ATPase activity observed in the CCD of rats with NS was entirely due to the stimulation of the population of Na-K-ATPase with low ouabain sensitivity. These results suggest that a dysregulation of this subclass of Na-K-ATPase might be the primary cause of sodium retention in this model of nephrotic syndrome.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1295
page 1295
icon of scanned page 1296
page 1296
icon of scanned page 1297
page 1297
icon of scanned page 1298
page 1298
icon of scanned page 1299
page 1299
icon of scanned page 1300
page 1300
Version history
  • Version 1 (April 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (38)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts