Gap junctions allow direct intercellular coupling between many cells including those in the blood vessel wall. They are formed by a group of related proteins called connexins, containing conserved transmembrane and extracellular domains, but unique cytoplasmic regions that may confer connexin-specific physiological properties. We used polymerase chain reaction amplification and cDNA library screening to clone DNA encoding a human gap junction protein, connexin37 (Cx37). The derived human Cx37 polypeptide contains 333 amino acids, with a predicted molecular mass of 37,238 D. RNA blots demonstrate that Cx37 is expressed in multiple organs and tissues (including heart, uterus, ovary, and blood vessel endothelium) and in primary cultures of vascular endothelial cells. Cx37 mRNA is coexpressed with connexin43 at similar levels in some endothelial cells, but at much lower levels in others. To demonstrate that Cx37 could form functional channels, we stably transfected communication-deficient Neuro2A cells with the Cx37 cDNA. The induced intercellular channels were studied by the double whole cell patch clamp technique. These channels were reversibly inhibited by the uncoupling agent, heptanol (2 mM). The expressed Cx37 channels exhibited multiple conductance levels and showed a pronounced voltage dependence. These electrophysiological characteristics are similar to, but distinct from, those of previously characterized connexins.
K E Reed, E M Westphale, D M Larson, H Z Wang, R D Veenstra, E C Beyer
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 365 | 3 |
47 | 23 | |
Scanned page | 356 | 1 |
Citation downloads | 61 | 0 |
Totals | 829 | 27 |
Total Views | 856 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.