The extent to which congestive heart failure (CHF) is dependent upon increased levels of the cardiac inhibitory GTP-binding protein (Gi), and the impact of CHF on the cardiac stimulatory GTP-binding protein (Gs) and mechanisms by which Gs may change remain unexplored. We have addressed these unsettled issues using pacing-induced CHF in pigs to examine physiological, biochemical, and molecular features of the right atrium (RA) and left ventricle (LV). CHF was associated with an 85 +/- 20% decrease in LV segment shortening (P < 0.001) and a 3.5-fold increase (P = 0.006) in the ED50 for isoproterenol-stimulated heart rate responsiveness. Myocardial beta-adrenergic receptor number was decreased 54% in RA (P = 0.004) and 57% in LV (P < 0.001), and multiple measures of adenylyl cyclase activity were depressed 49 +/- 8% in RA (P < 0.005), and 44 +/- 9% in LV (P < 0.001). Quantitative immunoblotting established that Gi and Gs were decreased in RA (Gi: 59% reduction; P < 0.0001; Gs: 28% reduction; P < 0.007) and LV (Gi: 35% reduction; P < 0.008; Gs: 28% reduction; P < 0.01) after onset of CHF. Reduced levels of Gi and Gs were confirmed by ADP ribosylation studies, and diminished function of Gs was established in reconstitution studies. Steady state levels for Gs alpha mRNA were increased in RA and unchanged in LV, and significantly more GS alpha was found in the supernatant (presumably cytosolic) fraction in RA and LV membrane homogenates after CHF, suggesting that increased Gs degradation, rather than decreased Gs synthesis, is the mechanism by which Gs is downregulated. We conclude that cardiac Gi content poorly predicts adrenergic responsiveness or contractile function, that decreased Gs is caused by increased degradation rather than decreased synthesis, and that alterations in beta-adrenergic receptors, adenylyl cyclase, and GTP-binding proteins are uniform in RA and LV in this model of congestive heart failure.
D A Roth, K Urasawa, G A Helmer, H K Hammond
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 188 | 1 |
55 | 17 | |
Figure | 0 | 7 |
Scanned page | 435 | 1 |
Citation downloads | 53 | 0 |
Totals | 731 | 26 |
Total Views | 757 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.