Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116270

Regulation of procollagen metabolism in the pressure-overloaded rat heart.

E G Eleftheriades, J B Durand, A G Ferguson, G L Engelmann, S B Jones, and A M Samarel

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Eleftheriades, E. in: PubMed | Google Scholar

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Durand, J. in: PubMed | Google Scholar

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Ferguson, A. in: PubMed | Google Scholar

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Engelmann, G. in: PubMed | Google Scholar

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Jones, S. in: PubMed | Google Scholar

Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153.

Find articles by Samarel, A. in: PubMed | Google Scholar

Published March 1, 1993 - More info

Published in Volume 91, Issue 3 on March 1, 1993
J Clin Invest. 1993;91(3):1113–1122. https://doi.org/10.1172/JCI116270.
© 1993 The American Society for Clinical Investigation
Published March 1, 1993 - Version history
View PDF
Abstract

To determine the molecular events responsible for the disproportionate accumulation of myocardial fibrillar collagens during sustained hypertension, we examined the in vivo rate of procollagen synthesis, collagen accumulation, and intracellular procollagen degradation 1-16 wk after abdominal aortic banding in young rats. These measurements were correlated with tissue mRNA levels for type I and type III procollagen polypeptides. Banded animals developed moderate, sustained hypertension and mild left ventricular hypertrophy. Increased type III procollagen mRNA levels were detected early after banding and persisted for the entire observation period. Disproportionate collagen accumulation without histological evidence of fibrosis was noted within 1 wk after hypertension induction. Fibrillar collagen accumulation at this time point resulted not from a major increase in procollagen synthesis, but rather a marked decrease in the rate of intracellular procollagen degradation. Interstitial fibrosis, however, was observed 16 wk after banding. Type I procollagen mRNA levels were increased six-fold, but only after 16 wk of hypertension. These results correlated well with the results of in vivo procollagen synthesis experiments at 16 wk, which demonstrated a threefold increase in left ventricular procollagen biosynthesis. We conclude that pretranslational as well as posttranslational mechanisms regulate fibrillar collagen deposition in the myocardial extracellular matrix during sustained hypertension.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1113
page 1113
icon of scanned page 1114
page 1114
icon of scanned page 1115
page 1115
icon of scanned page 1116
page 1116
icon of scanned page 1117
page 1117
icon of scanned page 1118
page 1118
icon of scanned page 1119
page 1119
icon of scanned page 1120
page 1120
icon of scanned page 1121
page 1121
icon of scanned page 1122
page 1122
Version history
  • Version 1 (March 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts