Beta 1- and beta 2-adrenergic receptor (beta-ARs) expression in the thick ascending limb of rat kidney was studied at the level of mRNA and receptor coupling to adenylyl cyclase. Absolute quantitation of beta 1- and beta 2-AR mRNAs in microdissected nephron segments was performed with an assay based on reverse transcription and polymerase chain reaction, using in vitro transcribed mutant RNAs as internal standards. In the cortical thick ascending limb (CTAL), the number of mRNA molecules/mm of tubular length was 2,806 +/- 328 (n = 12) for beta 1-AR and 159 +/- 26 for beta 2-AR (P < 0.01). Lower levels were obtained in the medullary thick ascending, beta 1-AR mRNA still being predominant. The pharmacological properties of beta-ARS was also studied in the CTAL. Cyclic AMP accumulation was stimulated by beta-agonist with a rank order of potency of isoproterenol > norepinephrine > epinephrine. This observation, and the higher efficiency of a beta 1 than of a beta 2 antagonist to inhibit isoproterenol-induced cAMP accumulation, establish the typical beta 1-AR sensitivity of the CTAL. No detectable contribution of atypical or beta 3-ARs to adenylyl cyclase stimulation could be found. In conclusion, this study, which shows markedly different levels of beta 1- and beta 2-AR mRNAS in the CTAL, provides a molecular basis for the predominant expression of the beta 1 receptor subtype in this nephron segment.
J M Elalouf, J M Buhler, C Tessiot, A C Bellanger, I Dublineau, C de Rouffignac
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 144 | 2 |
63 | 22 | |
Scanned page | 379 | 1 |
Citation downloads | 86 | 0 |
Totals | 672 | 25 |
Total Views | 697 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.