Advertisement
Research Article Free access | 10.1172/JCI116081
Department of Medicine, Hadassah University Hospital, Jerusalem, Israel.
Find articles by Eisenberg, S. in: JCI | PubMed | Google Scholar
Department of Medicine, Hadassah University Hospital, Jerusalem, Israel.
Find articles by Sehayek, E. in: JCI | PubMed | Google Scholar
Department of Medicine, Hadassah University Hospital, Jerusalem, Israel.
Find articles by Olivecrona, T. in: JCI | PubMed | Google Scholar
Department of Medicine, Hadassah University Hospital, Jerusalem, Israel.
Find articles by Vlodavsky, I. in: JCI | PubMed | Google Scholar
Published November 1, 1992 - More info
Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors.
Images.