Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116068

Interphase cytogenetics for the detection of the t(11;22)(q24;q12) in small round cell tumors.

M Giovannini, L Selleri, J A Biegel, K Scotlandi, B S Emanuel, and G A Evans

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Giovannini, M. in: PubMed | Google Scholar

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Selleri, L. in: PubMed | Google Scholar

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Biegel, J. in: PubMed | Google Scholar

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Scotlandi, K. in: PubMed | Google Scholar

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Emanuel, B. in: PubMed | Google Scholar

Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Find articles by Evans, G. in: PubMed | Google Scholar

Published November 1, 1992 - More info

Published in Volume 90, Issue 5 on November 1, 1992
J Clin Invest. 1992;90(5):1911–1918. https://doi.org/10.1172/JCI116068.
© 1992 The American Society for Clinical Investigation
Published November 1, 1992 - Version history
View PDF
Abstract

Among the small round cell tumors differential diagnosis is particularly difficult for their undifferentiated or primitive character. In this mixed group of tumors, only the primitive neuroectodermal tumors, which include Ewing's sarcoma (ES), show the unique and consistent feature of the (11;22)(q24;q12) translocation, which can therefore be considered a hallmark of these neoplasias. We analyzed four primitive neuroectodermal tumor cell lines, one osteosarcoma cell line, and 11 patients by fluorescent in situ hybridization with cosmid clones 23.2 and 5.8, bracketing the t(11;22) at 11q24. Metaphase spreads from tumor cell lines, and from biopsy specimens of three patients with ES were analyzed. In the remaining eight patients comprising five ES, two small cell osteosarcomas and one chronic osteomyelitis, only nuclei preparations were available for analysis. We detected the t(11;22) in interphase nuclei of the four primitive neuroectodermal tumor cell lines, of three patients in which the karyotype demonstrated the translocation and in five cases of ES in which cytogenetic analysis had not been possible. Two cases of small cell osteosarcoma and one chronic osteomyelitis were also analyzed and were both normal with respect to the t(11;22). By analyzing cell lines and small round cell tumor samples by fluorescent in situ hybridization, we established that interphase cytogenetics is a rapid alternative to chromosomal analysis for the detection of the t(11;22) and represents an invaluable tool for the differential diagnosis of small round cell tumors.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1911
page 1911
icon of scanned page 1912
page 1912
icon of scanned page 1913
page 1913
icon of scanned page 1914
page 1914
icon of scanned page 1915
page 1915
icon of scanned page 1916
page 1916
icon of scanned page 1917
page 1917
icon of scanned page 1918
page 1918
Version history
  • Version 1 (November 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts