Human atheromata obtained in vivo were used to test the hypothesis that transforming growth factor-beta 1 plays a role in the development of vascular restenosis. We analyzed 28 specimens from patients with primary atherosclerotic or restenotic lesions; 26 of these were obtained by directional atherectomy and 2 at the time of coronary bypass surgery. Seven control tissues included operatively excised segments of human internal mammary artery, myocardium, and unused portions of vein graft obtained intraoperatively. From these 35 specimens, 210 sections were examined using in situ hybridization. Measurement of silver grains/nucleus disclosed that expression of transforming growth factor-beta 1 mRNA was highest in restenotic tissues (P < 0.001 vs. primary atherosclerotic tissues) and lowest in nonatherosclerotic (control) tissues. In cultures of human vascular smooth muscle cells grown from explants of internal mammary artery, expression of mRNA for transforming growth factor-beta 1 was significantly greater in subconfluent than in confluent smooth muscle cells (P = 0.05). Transforming growth factor type-beta III receptor was expressed in cell cultures and undetectable in the tissue specimens. Sections taken adjacent to those studied by in situ hybridization were examined by immunohistochemistry using antibodies against transforming growth factor-beta 1 and alpha-actin (as a marker for smooth muscle cells) and disclosed transforming growth factor-beta 1 in smooth muscle cells present in these sections. These findings are consistent with the concept that transforming growth factor-beta 1 plays an important role in modulating repair of vascular injury, including restenosis, after balloon angioplasty.
S Nikol, J M Isner, J G Pickering, M Kearney, G Leclerc, L Weir
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 201 | 1 |
64 | 17 | |
Figure | 0 | 11 |
Scanned page | 462 | 4 |
Citation downloads | 72 | 0 |
Totals | 799 | 33 |
Total Views | 832 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.