Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (15)

Advertisement

Research Article Free access | 10.1172/JCI116026

Differential expression of Op18 phosphoprotein during human thymocyte maturation.

J Gratiot-Deans, D Keim, J R Strahler, L A Turka, and S Hanash

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Find articles by Gratiot-Deans, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Find articles by Keim, D. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Find articles by Strahler, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Find articles by Turka, L. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Find articles by Hanash, S. in: PubMed | Google Scholar

Published October 1, 1992 - More info

Published in Volume 90, Issue 4 on October 1, 1992
J Clin Invest. 1992;90(4):1576–1581. https://doi.org/10.1172/JCI116026.
© 1992 The American Society for Clinical Investigation
Published October 1, 1992 - Version history
View PDF
Abstract

Op18 (also termed prosolin/stathmin) is a highly conserved 18-kD cytosolic phosphoprotein expressed in low levels in mature resting G0 lymphocytes, but induced in late G1 and S phases after entry into the cell cycle. In addition to its induction in normal proliferating lymphocytes, Op18 has been found to occur at high levels in acute leukemias and in neuroendocrine tissue. The presence and rapid phosphorylation of Op18 after stimulation of proliferating cells correlates with subsequent functional responses of the cells, and, therefore, Op18 has been suggested to play a key role in signal transduction. The pattern of expression of Op18 during lymphoid development is of interest in view of its high levels of expression in acute leukemias, representing cells arrested at an immature stage, thus raising the possibility that Op18 may be regulated differently in mature and immature lymphoid cells. We report here that immature human thymocytes bearing the cortical double positive phenotype (CD4+CD8+) constitutively express high levels of Op18 protein. In contrast, in mature single positive thymocytes (CD3+CD4+ or CD3+CD8+), Op18 protein is expressed at a lower level, comparable to that seen in peripheral blood T cells. Cell cycle analysis demonstrated that most of the cells in the double positive thymocyte population expressing high levels of Op18 were noncycling and arrested in G0. Furthermore, there was no correlation between Op18 levels and the proportion of cycling cells in double positive thymocyte populations isolated from different thymuses. Interestingly, although Op18 protein levels did not increase any further after mitogenic stimulation of double positive thymocytes, an increase in Op18 phosphorylation was observed, thus coupling of Op18 phosphorylation to cell activation remained intact. Our results show that during lymphoid maturation Op18 expression is uncoupled from cell proliferation. These data also suggest that the ordered expression of proliferation-associated genes seen in mature T cells may be disrupted during T cell maturation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1576
page 1576
icon of scanned page 1577
page 1577
icon of scanned page 1578
page 1578
icon of scanned page 1579
page 1579
icon of scanned page 1580
page 1580
icon of scanned page 1581
page 1581
Version history
  • Version 1 (October 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (15)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts