Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages.
S C Rumsey, … , R J Deckelbaum, I J Goldberg
S C Rumsey, … , R J Deckelbaum, I J Goldberg
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1504-1512. https://doi.org/10.1172/JCI116018.
View: Text | PDF
Research Article

Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages.

  • Text
  • PDF
Abstract

Lipoprotein lipase (LPL), the rate limiting enzyme for hydrolysis of lipoprotein triglyceride, also mediates nonenzymatic interactions between lipoproteins and heparan sulfate proteoglycans. To determine whether cell surface LPL increases LDL binding to cells, bovine milk LPL was added to upregulated and nonupregulated human fibroblasts along with media containing LDL. LDL binding to cells was increased 2-10-fold, in a dose-dependent manner, by the addition of 0.5-10 micrograms/ml of LPL. The amount of LDL bound to the cells in the presence of LPL far exceeded the capacity for LDL binding via the LDL receptor. Treatment of fibroblasts with heparinase and heparitinase resulted in a 64% decrease in LPL-mediated LDL binding. Compared to studies performed without LPL, more LDL was internalized and degraded in the presence of LPL, but the time course was slower than that of classical lipoprotein receptor mediated pathways. In LDL receptor negative fibroblasts, LPL increased surface bound LDL > 140-fold, intracellular LDL > 40-fold, and LDL degradation > 6-fold. These effects were almost completely inhibited by heparin and anti-LPL monoclonal antibody. LPL also increased the binding and uptake by fibroblasts of apolipoprotein-free triglyceride emulsions; binding was increased > 8-fold and cellular uptake was increased > 40-fold with LPL. LPL increased LDL binding to THP-1 monocytes, and increased LDL uptake (4.5-fold) and LDL degradation (2.5-fold) by THP-1 macrophages. In the absence of added LPL, heparin and anti-LPL monoclonal antibodies decreased LDL degradation by > 40%, and triglyceride emulsion uptake by > 50%, suggesting that endogenously produced LPL mediated lipid particle uptake and degradation. We conclude that LPL increases lipid and lipoprotein uptake by cells via a pathway not involving the LDL receptor. This pathway may be important for lipid accumulation in LPL synthesizing cells.

Authors

S C Rumsey, J C Obunike, Y Arad, R J Deckelbaum, I J Goldberg

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 274 5
PDF 47 16
Scanned page 390 3
Citation downloads 81 0
Totals 792 24
Total Views 816
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts